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Section 1

Topics for the next three weeks
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By the end of week 13:

Theory-based confidence intervals (CI for difference in Means, CI for
proportions, and coverage probabilities)
Bootstrap t Confidence Interval
Hypothesis Testing: Promotion activity, understanding hypothesis tests
Conducting and interpreting hypothesis testing
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Section 2

Theory-based confidence intervals
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Needed packages

library(tidyverse)
library(moderndive)
library(infer)
library(resampledata)
library(PASWR2)
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Confidence Intervals for a Difference in Means

Let X and Y be random variables with X ∼ N(µ1, σ1) and Y ∼ N(µ2, σ2).
Then:

X̄ − Ȳ ∼ N

µ1 − µ2,

√
σ2

1
n1

+ σ2
2

n2


Of course, in practice we usually do not know the population variances, so
we will plug in the sample variances. As in the single-sample case, we call
this a t statistic:

T = (X̄ − Ȳ ) − (µX − µY )√
S2

X
nX

+ S2
Y

nY

The exact distribution of this statistic is an unsolved problem. It does,
however, have approximately a t distribution if the populations are normal.
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Confidence Intervals for a Difference in Means
The difficult part is the degrees of freedom. The degrees of freedom are
given with Welch’s approximation:

ν =

(
S2

X
nX

+ S2
Y

nY

)2

(
S2

X
nX

)2

nX−1 +

(
S2

Y
nY

)2

nY −1

.

If Xi ∼ N(µX , σX), i = 1, . . . , nX and Yj ∼ N(µY , σY ),
j = 1, . . . , nY then an approximate (1 − α) × 100% confidence interval
for µX − µY is given by:

CI1−α(µX−µY )=

(
X̄−Ȳ −t1−α/2;ν×

√
S2

X
+S2

Y
nX +nY

,X̄−Ȳ +t1−α/2;ν×

√
S2

X
+S2

Y
nX +nY

)
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Example 1

Construct a 90% confidence interval for µX − µY using the infor-
mation in ‘CALCULUS‘ which provides the assessment scores for
students enrolled in a biostatistics course according to whether they
had completed a calculus course prior to enrolling in the biostatistics
course. Before constructing a confidence interval, one should verify
the assumptions needed to have a valid confidence interval. In this
case we need to check for normality of both samples.
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Example 1

ggplot(data = CALCULUS, aes(sample = score, color = calculus)) +
stat_qq() +
stat_qq_line() +
theme_bw()
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Example 1

CALCULUS %>%
group_by(calculus) %>%
summarize(Mean = mean(score), n = n(), SD = sd(score))

# A tibble: 2 x 4
calculus Mean n SD
<fct> <dbl> <int> <dbl>

1 No 62.6 18 13.2
2 Yes 86.9 18 4.32

Because of the degrees of freedom, it is easier to use technology to get the
CI.
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Example 1

t.test(score ~ calculus, data = CALCULUS, conf.level = 0.90)

Welch Two Sample t-test

data: score by calculus
t = -7.4219, df = 20.585, p-value = 3.04e-07
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
90 percent confidence interval:
-29.98018 -18.68649

sample estimates:
mean in group No mean in group Yes

62.61111 86.94444
t.test(score ~ calculus, data = CALCULUS, conf.level = 0.90)$conf.int -> TTCI
TTCI

[1] -29.98018 -18.68649
attr(,"conf.level")
[1] 0.9
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Example 1

Compare to bootstrap CI:
library(infer)
CI <- CALCULUS %>%

specify(score ~ calculus) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "diff in means", order = c("No", "Yes"))

get_ci(CI, level = 0.90)

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 -29.6 -19.2
# Compare to Theoretical T CI below
TTCI

[1] -29.98018 -18.68649
attr(,"conf.level")
[1] 0.9
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Confidence Intervals for a Difference in Means

If the confidence interval for the difference in means contains 0, then
we cannot rule out the possibility that the means might be the same,
µX − µY = 0 or, equivalently, µX = µY .

Skewness is less of an issue for the two-sample t confidence intervals
than for one-sample intervals, because the skewness from the two
samples tends to cancel out.

In particular, if the populations have the same skewness and variance
and the sample sizes are equal, then the skewness cancels out exactly,
and the distribution of t statistics can be very close to a t distribution
even for quite small samples.
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Example 2

Consider the weights of boy and girl babies born in Texas in 2004.
Construct a 95% t confidence interval for the mean difference in
weights (boys -girls).

We will use the TXBirths2004 from the resampledata package.
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Example 2

Texas <- TXBirths2004
ggplot(data = Texas, aes(x = Weight)) +

geom_histogram(fill = "blue", color = "black") +
facet_grid(rows = vars(Gender)) +
theme_bw()
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Example 2

ggplot(data = Texas, aes(sample = Weight)) +
stat_qq(color = rgb(0, 0, 1, 0.15)) +
facet_grid(rows = vars(Gender)) +
theme_bw()
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Example 2

t.test(Weight ~ Gender, data = Texas)

Welch Two Sample t-test

data: Weight by Gender
t = -4.193, df = 1552.9, p-value = 2.908e-05
alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
95 percent confidence interval:
-170.12395 -61.68415

sample estimates:
mean in group Female mean in group Male

3220.939 3336.843
Texas$Gender <- factor(Texas$Gender, levels = c("Male", "Female"))
t.test(Weight ~ Gender, data = Texas)

Welch Two Sample t-test

data: Weight by Gender
t = 4.193, df = 1552.9, p-value = 2.908e-05
alternative hypothesis: true difference in means between group Male and group Female is not equal to 0
95 percent confidence interval:

61.68415 170.12395
sample estimates:

mean in group Male mean in group Female
3336.843 3220.939
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Confidence Intervals for Proportions

In 2010, according to an AP-Gfk Poll conducted on October 13-
18, 59% of 846 likely voters responded that they felt things in
this country were heading in the wrong direction (http:www.ap-
gfkpoll.com/poll.archive.html).

Let X denote the number of likely voters in a sample of size n who
think the country is headed in the wrong direction.

We assume X is binomial, X ∼ Bin(n, p).

We know that the proportion of likely voters, p̂ = X
n is an unbiased

estimator of p and for large n.

Z = p̂ − p√
p(1−p)

n

is approximately standard normal.
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Confidence Intervals for Proportions

Thus:

P

−z1−α/2 <
p̂ − p√
p(1−p)

n

< z1−α/2

 ≈ 1 − α

This gives:
p̂ − p√
p(1−p)

n

= ±z1−α/2

At this point the different methods diverge.
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The Wald method

The traditional Wald method completes the algebra to the following step
before making an approximation:

CI1−α(p) = p̂ ± z1−α/2

√
p(1 − p)

n

At this point the Wald method replaces the population values p and q in the
right side of the equation with their approximations p̂ and q̂ to obtain the
traditional Wald confidence interval formula for a proportion:

CI1−α(p) = p̂ ± z1−α/2

√
p̂(1 − p̂)

n
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The Wald method

In 2010, according to an AP-Gfk Poll conducted on October 13-
18, 59% of 846 likely voters responded that they felt things in
this country were heading in the wrong direction (http:www.ap-
gfkpoll.com/poll.archive.html). Find a 95% confidence interval.

For a 95% confidence interval using p̂ = 0.59, n = 846 and z1−α/2 =
1.96 , we have

0.59 ± 1.96

√
0.59(0.41)

846 = (0.5569, 0.6231)
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The Wald method

x <- 0.59*846
n <- 846
phat <- x/n
phat + c(-1, 1)*qnorm(.975)*sqrt(phat*(1 - phat)/n)

[1] 0.5568578 0.6231422

library(binom)
binom.confint(x = .59*846, n = 846, methods = "asymptotic")

method x n mean lower upper
1 asymptotic 499.14 846 0.59 0.5568578 0.6231422
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The Agresti-Coull Interval for a Proportion

Agresti and Coull (1998) considered the 95% confidence interval for which
the 0.975 quantile is z0.975 ≈ 1.96, and hence z2

0.975 ≈ 4

If X denotes the number of successes in a sample of size n, let
X̃ = X + 2, ñ = n + 4, and p̃ = X̃

ñ .

Then the (1 − α) × 100 confidence interval is given by:

CI1−α(p) = p̃ ± z1−α/2

√
p̃(1 − p̃)

ñ
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The Agresti-Coull Interval for a Proportion

In 2010, according to an AP-Gfk Poll conducted on October 13-
18, 59% of 846 likely voters responded that they felt things in
this country were heading in the wrong direction (http:www.ap-
gfkpoll.com/poll.archive.html). Find a 95% confidence interval.

For a 95% confidence interval using p̂ = 0.59, n = 846 and z1−α/2 =
1.96 , we have X̃ = 0.59(846) + 2 = 501.14, ñ = 846 + 4 = 850 and
p̃ = 0.5896

CI1−α(p) = 0.5896 ± 1.96

√
0.5896(0.4104)

850 = (0.5565, 0.6226)
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The Agresti-Coull Interval for a Proportion

xtilde <- 0.59*846 + 2
ntilde <- 846 + 4
ptilde <- xtilde/ntilde
ptilde + c(-1, 1)*qnorm(.975)*sqrt(ptilde*(1 - ptilde)/ntilde)

[1] 0.5565072 0.6226458

# Or
binom.confint(x = .59*846, n = 846, methods = "ac")

method x n mean lower upper
1 agresti-coull 499.14 846 0.59 0.556521 0.6226653
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Wilson Score method

The Wilson Score method does not make the approximation to the equation
below

CI1−α(p) = p̂ ± z1−α/2

√
p(1 − p)

n

The result is more involved algebra (which involves solving a quadratic
equation), and a more complicated solution.

The result is the Wilson Score confidence interval for a proportion:

CI1−α(p) =
p̂ +

z2
1−α/2
2n ± z1−α/2

√
p̂(1−p̂)

n +
z2

1−α/2
4n2

1 +
z2

1−α/2
n
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Wilson Score method

In 2010, according to an AP-Gfk Poll conducted on October 13-
18, 59% of 846 likely voters responded that they felt things in
this country were heading in the wrong direction (http:www.ap-
gfkpoll.com/poll.archive.html). Find a 95% confidence interval.

For a 95% confidence interval using p̂ = 0.59, and n = 846 we have:

p =
0.59 + 1.962

2(846) ± 1.96
√

0.59(0.41)
846 + 1.962

4(8462)

1 + 1.962

846
= (0.5565, 0.6227)
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Wilson Score method

prop.test(x = 499.14, n = 846, conf.level = 0.95, correct = FALSE)

1-sample proportions test without continuity correction

data: 499.14 out of 846, null probability 0.5
X-squared = 27.41, df = 1, p-value = 1.645e-07
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.5565235 0.6226629

sample estimates:
p

0.59
# Or
binom.confint(x = .59*846, n = 846, methods = "wilson")

method x n mean lower upper
1 wilson 499.14 846 0.59 0.5565235 0.6226629
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Example

A political candidate prepares to conduct a survey to gauge voter
support for his candidacy for senator. He would like a confidence
interval with an error of at most 4%, with 95% confidence. How large
should the sample size be for the survey?

Solution: Since the Agresti-Coull interval is symmetric, the margin of
error is 1.96

√
p̃(1−p̃)

ñ . Thus, we want to solve for ñ in

1.96

√
p̃(1 − p̃)

ñ
≤ 0.04

Unfortunately, we do not know p̃. If we did, the candidate would
not need to conduct the survey! We will use p̃ = 0.5 since this will
maximize the expression under the radical sign.
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Example

ptilde <- seq(0, 1, length = 1000)
fptilde <- sqrt(ptilde*(1 - ptilde))
plot(ptilde, fptilde, type = "l", ylab = "", xlab =expression(tilde(p)))
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Example

Solving for ñ yields(1.96(0.5)
0.04

)2
≤ ñ =⇒ ñ ≥ 600.25

Then
n ≥ 596.25

ntilde <- (1.96*(0.5)/0.04)ˆ2
n <- ntilde - 4
n <- ceiling(n)
n

[1] 597
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Coverage Probabilities of Binomial Confidence Intervals

Suppose a new process for making a prescription drug is in
development.

Of n = 30 trial batches made with the current version of the process,
X = 24 batches give satisfactory results.
Then p̂ = 24/30 = 0.8 estimates the population proportion
p = P (Success) of satisfactory batches with the current version of the
process.

Wondering how near p̂ might be to p, the investigators use the Wald CI
method:

CI1−α(p) = p̂ ± z1−α/2

√
p̂(1 − p̂)

n

to obtain the approximate 95% confidence interval 0.8 ± 0.1431355 or
(0.6568645, 0.9431355)
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Coverage Probabilities of Binomial Confidence Intervals

The question is whether a 95% level of confidence in the resulting interval is
warranted.

If the Wald CI method is used repeatedly, in what proportion of
instances does it yield an interval that covers the true value p?

If Wald CI method is valid here, then the simple answer ought to be
95%.
Unfortunately, there is no simple answer to this question. It turns out
that the coverage probability depends on the value of p.
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Coverage Probabilities of Binomial Confidence Intervals

Now choose a particular value of p, say p = 0.8, so that
X has a binomial distribution with n = 30 trials and probability of
success (p = 0.8).
X ∼ Bin(n = 30, p = 0.8).
The vector of prob of the 31 probabilities P (X = x), X = 0, 1, . . . , 30
in this distribution is found.

Next, we determine which of the 31 confidence intervals cover the
value p = 0.8.

Finally, the coverage probability is computed: It is the sum of the
probabilities corresponding to values of x that yield intervals covering p.
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Coverage Probabilities of Binomial Confidence Intervals
alpha <- 0.05
n <- 30 # number of trials
x <- 0:n
sp <- x/n # sample proportion
m.err <- qnorm(1 - alpha/2)*sqrt(sp*(1 - sp)/n)
lcl <- sp - m.err
ucl <- sp + m.err
pp <- 0.8 # pp = P(Success)
prob <- dbinom(x, n, pp)
cover <- (pp >= lcl) & (pp <= ucl) # vector of 0s and 1s
RES <- round(cbind(x, sp, lcl, ucl, prob, cover), 4)
RES[19:30, ]

x sp lcl ucl prob cover
[1,] 18 0.6000 0.4247 0.7753 0.0064 0
[2,] 19 0.6333 0.4609 0.8058 0.0161 1
[3,] 20 0.6667 0.4980 0.8354 0.0355 1
[4,] 21 0.7000 0.5360 0.8640 0.0676 1
[5,] 22 0.7333 0.5751 0.8916 0.1106 1
[6,] 23 0.7667 0.6153 0.9180 0.1538 1
[7,] 24 0.8000 0.6569 0.9431 0.1795 1
[8,] 25 0.8333 0.7000 0.9667 0.1723 1
[9,] 26 0.8667 0.7450 0.9883 0.1325 1

[10,] 27 0.9000 0.7926 1.0074 0.0785 1
[11,] 28 0.9333 0.8441 1.0226 0.0337 0
[12,] 29 0.9667 0.9024 1.0309 0.0093 0
sum(dbinom(x[cover], n, pp)) # total coverage prob at pp

[1] 0.9463279
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Coverage Probabilities of Binomial Confidence Intervals

Now use p = 0.79
alpha <- 0.05
n <- 30 # number of trials
x <- 0:n
sp <- x/n # sample proportion
m.err <- qnorm(1 - alpha/2)*sqrt(sp*(1 - sp)/n)
lcl <- sp - m.err
ucl <- sp + m.err
pp <- 0.79 # pp = P(Success)
prob <- dbinom(x, n, pp)
cover <- (pp >= lcl) & (pp <= ucl) # vector of 0s and 1s
RES <- round(cbind(x, sp, lcl, ucl, prob, cover), 4)
#RES[18:31, ]
sum(dbinom(x[cover], n, pp)) # total coverage prob at pp

[1] 0.8875662
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Coverage Probabilities of Binomial Confidence Intervals -
Wald

We step through two thousand values of p from near 0 to near 1.
Subsequently plot coverage probability versus p.
par(mfrow=c(2, 2))
for(alpha in c(0.01, 0.02, 0.05, 0.10)){
n <- 30 # number of trials
CL <- 1 - alpha
x <- 0:n
adj <- 0 #(2 for Agresti-Coull)
k <- qnorm(1 - alpha/2)
sp <- (x + adj)/(n + 2*adj)
m.err <- k * sqrt(sp*(1 - sp)/(n + 2*adj))
lcl <- sp - m.err
ucl <- sp + m.err
m <- 2000 # number of values of pp
pp <- seq(1/n, 1 - 1/n, length = m)
p.cov <- numeric(m)
for(i in 1:m){

cover <- (pp[i] >= lcl) & (pp[i] <= ucl) # vector of 0s and 1s
p.rel <- dbinom(x[cover], n, pp[i])
p.cov[i] <- sum(p.rel)

}
plot(pp, p.cov, type = "l", ylim =c(0.60, 1.1), main = paste("n = ", n),

xlab = "p", ylab = "Coverage Probability")
lines(c(1/n, 1- 1/n), c(1 - alpha, 1- alpha), col = "red", lty = "dashed")

text(0.5, CL + 0.05, paste("Targeted Confidence Level =", CL))
}
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Coverage Probabilities of Binomial Confidence Intervals -
Wald

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

n =  30

p

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

Targeted Confidence Level = 0.99

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

n =  30

p

C
ov

er
ag

e 
P

ro
ba

bi
lit

y Targeted Confidence Level = 0.98

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

n =  30

p

C
ov

er
ag

e 
P

ro
ba

bi
lit

y Targeted Confidence Level = 0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

n =  30

p

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

Targeted Confidence Level = 0.9

Spring 2024 (Appalachian State University) STT 3850 : Weeks 11, 12, and 13 38 / 122



Coverage Probabilities of Binomial Confidence Intervals -
Agresti-Coull

Next consider the Agresti-Coull confidence intervals.
par(mfrow=c(2, 2))
for(alpha in c(0.01, 0.02, 0.05, 0.10)){
n <- 30 # number of trials
CL <- 1 - alpha
x <- 0:n
adj <- 2 # 0 for large sample 2 for Agresti Coull
z <- qnorm(1 - alpha/2)
sp <- (x + adj)/(n + 2*adj)
m.err <- z*sqrt(sp*(1 - sp)/(n + 2*adj))
lcl <- sp - m.err
ucl <- sp + m.err
m <- 2000 # number of values of pp
pp <- seq(1/n, 1 - 1/n, length = m)
p.cov <- numeric(m)
for(i in 1:m){

cover <- (pp[i] >= lcl) & (pp[i] <= ucl) # vector of 0s and 1s
p.rel <- dbinom(x[cover], n, pp[i])
p.cov[i] <- sum(p.rel)

}
plot(pp, p.cov, type = "l", ylim =c(0.60, 1.1), main = paste("n = ", n),

xlab = "p", ylab = "Coverage Probability")
lines(c(1/n, 1- 1/n), c(1 - alpha, 1- alpha), col = "red", lty = "dashed")

text(0.5, CL + 0.05, paste("Targeted Confidence Level =", CL))
}
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Coverage Probabilities of Binomial Confidence Intervals -
Agresti-Coull
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Coverage Probabilities of Binomial Confidence Intervals -
Wilson

Next we use Wilson score intervals to do the same thing.
par(mfrow=c(2, 2))
for(alpha in c(0.01, 0.02, 0.05, 0.10)){
n <- 30 # number of trials
CL <- 1 - alpha
x <- 0:n
z <- qnorm(1 - alpha/2)
sp <- x/n
sptilda <- (x + zˆ2/2)/(n + zˆ2)
m.err <- (z/(n + zˆ2))*sqrt(n*sp*(1 - sp) + zˆ2/4)
lcl <- sptilda - m.err
ucl <- sptilda + m.err
m <- 2000 # number of values of pp
pp <- seq(1/n, 1 - 1/n, length = m)
p.cov <- numeric(m)
for(i in 1:m){

cover <- (pp[i] >= lcl) & (pp[i] <= ucl) # vector of 0s and 1s
p.rel <- dbinom(x[cover], n, pp[i])
p.cov[i] <- sum(p.rel)

}
plot(pp, p.cov, type = "l", ylim =c(0.60, 1.1), main = paste("n = ", n),

xlab = "p", ylab = "Coverage Probability")
lines(c(1/n, 1- 1/n), c(1 - alpha, 1- alpha), col = "red", lty = "dashed")

text(0.5, CL + 0.05, paste("Targeted Confidence Level =", CL))
}
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Coverage Probabilities of Binomial Confidence Intervals -
Wilson
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Section 3

Bootstrap t Confidence Interval
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Bootstrap t Confidence Interval

The bootstrap percentile confidence interval for giving a range of
plausible values for a parameter was introduced earlier.

Another confidence interval is the bootstrap t interval that is based on
estimating the actual distribution of the t statistic from the data, rather
than just assuming that the t statistic has a Student’s t distribution.

Recall the Bangladesh arsenic levels data. The distribution of arsenic levels
was skewed right.
library(resampledata)
head(Bangladesh)

Arsenic Chlorine Cobalt
1 2400 6.2 0.42
2 6 116.0 0.45
3 904 14.8 0.63
4 321 35.9 0.68
5 1280 18.9 0.58
6 151 7.8 0.35
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Bootstrap t Confidence Interval
ggplot(data = Bangladesh, aes(x = Arsenic)) +

geom_histogram(fill = "blue", color = "black",
binwidth = 100) +

theme_bw()
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To use the t interval formula for the mean µ requires that the statistic

T = x̄ − µ

S/
√

n

to follow a tν . That seems unlikely for data this skewed.
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Bootstrap t Confidence Interval

Instead

we bootstrap the t statistic: for each of the 105 resamples,

we compute
the resample mean X̄∗

resample standard deviation S∗

and then compute the resample T statistic

T ∗ = X̄∗ − x̄

S∗/
√

n
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Bootstrap t Confidence Interval

Arsenic <- subset(Bangladesh, select = Arsenic, drop = T)
xbar <- mean(Arsenic)
S <- sd(Arsenic)
N <- 10ˆ5
n <- length(Arsenic)
Tstar <- numeric(N)
Sstar <- numeric(N)
Xbarstar <- numeric(N)
set.seed(13)
for (i in 1:N)
{

x <-sample(Arsenic, size = n, replace = T)
Xbarstar[i] <- mean(x)
Sstar[i] <- sd(x)

}
Tstar <- (Xbarstar - xbar)/(Sstar / sqrt(n))
CIt <- quantile(Tstar, c(0.025, 0.975))
names(CIt) <- NULL
CIt

[1] -2.654657 1.655932
(BPCI <- quantile(Xbarstar, probs = c(0.025, 0.975)))

2.5% 97.5%
92.3708 163.1075
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Bootstrap t Confidence Interval

par(mfrow= c(2, 2))
plot(Xbarstar, Sstar, ylab = "S*", xlab = substitute(paste(bar(X),"*")), col = rgb(1,0,0,0.01))
qqnorm(Tstar, col = rgb(1,0,0,0.01))
qqline(Tstar)
hist(Tstar, xlab = "T*", main = "Bootstrap distribution of T*", col = "red", breaks = "Scott")
hist(Xbarstar, xlab = substitute(paste(bar(X),"*")),

main = substitute(paste("Bootstrap Distribution of ", bar(X),"*")), col = "red", breaks = "Scott")
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Bootstrap t Confidence Interval
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Bootstrap t Confidence Interval

Note that the bootstrap distribution for the t statistic is left skewed;
in fact, it is more left skewed than the the bootstrap distribution of the
mean which is right skewed!

The reason for this is the strong positive relationship between X̄∗ and
S∗.

If a bootstrap resample contains a large number of the big values from
the right tail of the original data, then X̄∗ is large and hence S∗ is
especially large (standard deviations are computed by squaring distances
from the mean, so they are affected even more by large observations
than a mean is).
The large denominator thus keeps T ∗ from being particularly large.
Conversely, when there are relatively few of the big observations in the
resample, then X̄∗ − x̄ is negative and the denominator can be
especially small, thus resulting in a T ratio that is large negative.
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Bootstrap t Confidence Interval

The 2.5% and 97.5% percentiles of the bootstrap t distribution are
-2.6546571 and 1.6559318, compared to ±1.968789 for the Student’s t
distribution.

This is a reflection of the skewed nature of the bootstrap t distribution
compared to the symmetric Student’s t distribution.

What skewness implies for the accuracy of the formula-based t
confidence intervals (X̄ ± t1−α/2,ν × S/

√
n)?

For right-skewed data, when X̄ < µ, typically S < σ so the confidence
interval tends to be narrow, and the interval falls below µ more often
than α/2 × 100% of the time. This is bad.
Conversely, when X̄ > µ, typically S > σ so the intervals tend to be to
wide and do not miss µ often enough; this is also bad.
Overall, the intervals tend to be to the left of where they should be and
give a biased picture of where the mean is likely to be.
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Bootstrap t Confidence Interval
Let

T = X̄−µ
S/

√
n

and
F be the cdf for the T statistic (the cdf of the sampling distribution)
Q1 and Q2 denote the α/2 and (1 − α/2) quantiles of this distribution;
that is, Q1 = F −1(α/2) and Q2 = F −1(1 − α/2).

Then:

1 − α = P (Q1 < T < Q2) = P

(
Q1 <

X̄ − µ

S/
√

n
< Q2

)

This suggest the confidence interval:

CI1−α(µ) =
(

X̄ − Q2
S√
n

, X̄ − Q1
S√
n

)
The quantiles Q1 and Q2 are unknown, but they can be estimated using quantiles of the bootstrap distribution of the t

statistic: T ∗ = (X̄∗ − x̄)/(S∗/
√

n) where X̄∗ and S∗ are the mean and standard deviation of a bootstrap resample.
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Bootstrap t Confidence Interval

We use the standard error formula for every bootstrap sample because
the bootstrap statistic should mimic T = X̄−µ

S/
√

n
.

Thus: Q1 = −2.6546571 and Q2 = 1.6559318, so we compute
LL <- xbar - CIt[2]*S/sqrt(n)
UL <- xbar - CIt[1]*S/sqrt(n)
(c(LL, UL))

[1] 95.34636 173.37114

The 95% bootstrap percentile interval is (92.3708026, 163.1074815)
while the formula t confidence interval is (89.6834234, 160.956429)

The bootstrap t interval is stretched further to the right, reflecting the
right-skewed distribution of the data.

Because of the large sample size, we report the 95% bootstrap t
confidence interval (95.346365, 173.371137)µ g/dL.
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Using the package boot

Next we consider computing the bootstrap percentile and t confidence
intervals using the functions boot() and boot.ci() functions from the
package boot.

We write the function mean.boot() and use mean.boot() inside the
boot() function storing the results in the object boot.out.

Finally, the function boot.ci() is applied to boot.out which results
in the creation of the percentile and confidence intervals.
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Using the package boot

require(boot)
mean.boot <- function(data, i){

d <- data[i]
M <- mean(d)
V <- var(d)/length(i)
return(c(M, V))

}
boot.out <- boot(Arsenic, mean.boot, R=10ˆ5)
boot.ci(boot.out, conf = 0.95, type = c("perc", "stud"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 100000 bootstrap replicates

CALL :
boot.ci(boot.out = boot.out, conf = 0.95, type = c("perc", "stud"))

Intervals :
Level Studentized Percentile
95% ( 95.3, 173.1 ) ( 92.5, 163.2 )
Calculations and Intervals on Original Scale
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Using the package boot

plot(boot.out)
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Using the package boot

par(mfrow = c(1, 2))
hist(boot.out$t[,1], col = "pink", breaks = "Scott", main = "",

xlab = substitute(paste(bar(X),"*")), freq= FALSE)
lines(density(boot.out$t[,1]), lwd = 2)
hist((boot.out$t[,1] - boot.out$t0[1])/(boot.out$t[,2])ˆ.5, col = "pink", breaks = "Scott", main = "",

xlab ="T*", freq= FALSE)
lines(density((boot.out$t[,1] - boot.out$t0[1])/(boot.out$t[,2])ˆ.5), lwd = 2)
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The bootstrap intervals for a difference in means follows the same idea.
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Bootstrap t confidence interval for µ1 − µ2

For each of many resamples, calculate the bootstrap t statistic

T ∗ = X̄∗
1 − X̄∗

2 − (x̄1 − x̄2)√
S2∗

1 /n1 + S2∗
2 /n2

Let Q∗
1 and Q∗

2 be the empirical α/2 and (1 − α/2) quantiles of the
bootstrap t distribution, respectively. The bootstrap t confidence interval is

CI1−α(µ1−µ2)=
(

(x̄1−x̄2))−Q∗
2×

√
S2∗

1 /n1+S2∗
2 /n2,(x̄1−x̄2))−Q∗

1×
√

S2∗
1 /n1+S2∗

2 /n2
)

Recall the Verizon example, where we considered the difference in means
of two very skewed distributions of repair times for two very unbalanced
samples (n1 = 23 versus n2 = 1664). Let us look at the data again.

Spring 2024 (Appalachian State University) STT 3850 : Weeks 11, 12, and 13 58 / 122



Verizon example

Time.ILEC <- subset(Verizon, select=Time, Group == "ILEC", drop=TRUE)
Time.CLEC <- subset(Verizon, select=Time, Group == "CLEC", drop=TRUE)
thetahat <- mean(Time.ILEC) - mean(Time.CLEC)
nx <- length(Time.ILEC) #nx=1664
ny <- length(Time.CLEC) #ny=23
SE <- sqrt(var(Time.ILEC)/nx + var(Time.CLEC)/ny)
N <- 10ˆ4
Tstar <- numeric(N)
DM <- numeric(N)
set.seed(1)
for(i in 1:N)
{

bootx <- sample(Time.ILEC, nx, replace=TRUE)
booty <- sample(Time.CLEC, ny, replace=TRUE)
Tstar[i] <- (mean(bootx) - mean(booty) - thetahat) /

sqrt(var(bootx)/nx + var(booty)/ny)
DM[i] <- mean(bootx) - mean(booty)

}
quantile(Tstar, c(.975, .025))

97.5% 2.5%
3.514460 -1.479951
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Verizon example

CItboot <- thetahat - quantile(Tstar, c(.975, .025)) * SE
names(CItboot) <- NULL
CItboot

[1] -22.44597 -2.05534
CIperct <- quantile(DM, c(0.025, 0.975))
CIperct

2.5% 97.5%
-17.181759 -1.671277
t.test(Time.ILEC, Time.CLEC)$conf

[1] -16.5568985 0.3618588
attr(,"conf.level")
[1] 0.95

The more accurate bootstrap t interval stretches farther in the negative
direction, even more than the bootstrap percentile interval.
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Using the package boot for the difference in means

Bootstrap percentile and t confidence intervals using the functions boot()
and boot.ci() functions from the package boot are constructed using the
user created mean2.boot() function.
require(boot)
mean2.boot <- function(data, i){

d <- data[i, ]
M <- tapply(d$Time, d$Group, mean)
V <- tapply(d$Time, d$Group, var)/tapply(d$Time, d$Group, length)
return(c(M[2] - M[1], V[2] + V[1]))

}
set.seed(1)
boot.out <- boot(Verizon, mean2.boot, R=10ˆ4, strata = Verizon[ ,2])
boot.ci(boot.out, conf = 0.95, type = c("perc", "stud"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = boot.out, conf = 0.95, type = c("perc", "stud"))

Intervals :
Level Studentized Percentile
95% (-22.229, -2.070 ) (-17.136, -1.779 )
Calculations and Intervals on Original Scale
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Using the package boot for the difference in means

plot(boot.out)

Histogram of t
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Using the package boot for the difference in means

par(mfrow = c(1, 2))
hist(boot.out$t[,1], col = "pink", breaks = "Scott",

main = "", freq= FALSE, xlab = substitute(paste(bar(x)[1],"* - ", bar(x)[2],"*")))
lines(density(boot.out$t[,1]), lwd = 2)
hist((boot.out$t[,1] - boot.out$t0[1])/(boot.out$t[,2])ˆ.5, col = "pink", breaks = "Scott",

main = "", xlab ="T*", freq= FALSE)
lines(density((boot.out$t[,1] - boot.out$t0[1])/(boot.out$t[,2])ˆ.5), lwd = 2)
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Comparing Bootstrap t and Formula t Confidence Intervals

Where the bootstrap does differ from classical inference is in how it
handles skewness.

The bootstrap percentile interval and bootstrap t interval are in general
asymmetrical, with asymmetry depending on the sample.
These intervals estimate the skewness of a population from the skewness
of the sample.
In contrast, classical t intervals assume that the population has no
underlying skewness (skewness is 0).

Which is preferred? Frankly, neither, but rather something in between.
This is an area that needs attention from statistical researchers.
Until then, we will recommend the formula t if n ≤ 10, and the
bootstrap t otherwise; the reason being in large samples, we should put
more trust in the data, in this case, the bootstrap t is preferred.
Also, the bootstrap percentile makes less of a skewness correction than
does the bootstrap t. For larger samples, the bootstrap t is preferred.
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Section 4

Hypothesis Testing
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Fundamental Question of Inference

How does what we observed in our data compare to what would happen if
the null hypothesis were actually true and we repeated the process many
times?
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Hypothesis Testing

Now that we’ve studied confidence intervals, let’s study another
commonly used method for statistical inference: hypothesis testing.

Hypothesis tests allow us to take a sample of data from a population
and infer about the plausibility of competing hypotheses.

The good news is we’ve already covered many of the necessary
concepts to understand hypothesis testing.

We will expand further on these ideas and provide a general framework
for understanding hypothesis tests.
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Needed packages

Let’s load all the packages needed for this chapter
library(tidyverse)
library(infer)
library(moderndive)
library(nycflights13)
library(ggplot2movies)
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Promotions activity

Let’s start with an activity studying the effect of gender on promotions at a
bank.

Say you are working at a bank in the 1970s and you are submitting
your résumé to apply for a promotion.

Will your gender affect your chances of getting promoted?

To answer this question, we’ll focus on data from a study published in
the Journal of Applied Psychology in 1974.
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Promotions activity

To begin the study, 48 bank supervisors were asked to assume the role of a
hypothetical director of a bank with multiple branches.

Every one of the bank supervisors was given a résumé and asked
whether or not the candidate on the résumé was fit to be promoted to
a new position in one of their branches.

However, each of these 48 résumés were identical in all respects except
one: the name of the applicant at the top of the résumé.

Of the supervisors,
24 were randomly given résumés with stereotypically “male” names,
while - 24 of the supervisors were randomly given résumés with
stereotypically “female” names.

Since only gender varied from résumé to résumé, researchers could
isolate the effect of this variable in promotion rates.
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Promotions activity

The moderndive package contains the data on the 48 applicants in the
promotions data frame.
promotions %>%

sample_n(size = 10) %>%
arrange(id)

# A tibble: 10 x 3
id decision gender

<int> <fct> <fct>
1 4 promoted male
2 7 promoted male
3 14 promoted male
4 15 promoted male
5 16 promoted male
6 26 promoted female
7 30 promoted female
8 33 promoted female
9 41 not female

10 45 not female
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Promotions activity

Let’s perform an exploratory data analysis of the relationship between the
two categorical variables decision and gender.
ggplot(promotions, aes(x = gender, fill = decision)) +

geom_bar() +
labs(x = "Gender of name on résumé")
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Observe that it appears that résumés with female names were much less
likely to be accepted for promotion.
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Promotions activity

Let’s quantify these promotion rates
promotions %>%

group_by(gender, decision) %>%
tally()

# A tibble: 4 x 3
# Groups: gender [2]

gender decision n
<fct> <fct> <int>

1 male not 3
2 male promoted 21
3 female not 10
4 female promoted 14

So of the 24 résumés
with male names: 21/24 = 0.875 = 87.5% were selected for promotion.
with female names: 14/24 = 0.583 = 58.3% were selected for
promotion.

Résumés with male names were selected for promotion at a rate
0.875 − 0.583 = 0.292 = 29.2% higher than résumés with female names.
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Promotions activity

The question is, however, does this provide conclusive evidence that there is
gender discrimination in promotions at banks?

Could a difference in promotion rates of 29.2% still occur by chance,
even in a hypothetical world where no gender-based discrimination
existed?

In other words, what is the role of sampling variation in this
hypothesized world?

To answer this question, we’ll again rely on a computer to run
simulations.
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Promotions activity: Shuffling once

First, try to imagine a hypothetical universe where no gender discrimination
in promotions existed.

In such a hypothetical universe, the gender of an applicant would have
no bearing on their chances of promotion

Bringing things back to our promotions data frame, the gender
variable would thus be an irrelevant label.

If these gender labels were irrelevant, then we could randomly reassign
them by “shuffling” them to no consequence!
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Promotions activity: Shuffling once

To illustrate this idea, let’s narrow our focus to 6 arbitrarily chosen
résumés of the 48.

The decision column shows that 3 résumés resulted in promotion while 3
didn’t.

The gender column shows what the original gender of the résumé name
was.

The shuffled_gender shows a random “shuffle” values of gender.
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Promotions activity: Shuffling once
Again, such random shuffling of the gender label only makes sense in
our hypothesized universe of no gender discrimination.

How could we extend this shuffling of the gender variable to all 48
résumés by hand?

One way would be by using a standard deck of 52 playing cards,

By removing two red cards and two black cards, we would end up with
24 red cards and 24 black cards.
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Promotions activity: Shuffling once

After shuffling these 48 cards as seen below.

we can flip the cards over one-by-one, assigning “male” for each red
card and “female” for each black card.
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Promotions activity: Shuffling once

We have one such shuffling in the promotions_shuffled data frame of
the moderndive package:
ggplot(promotions_shuffled,

aes(x = gender, fill = decision)) +
geom_bar() +
labs(x = "Gender of résumé name")
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It appears the difference in “male names” versus “female names” promotion
rates is now different.
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Promotions activity: Shuffling once

Let’s also compute the proportion of résumés accepted for promotion for
each group:
promotions_shuffled %>%

group_by(gender, decision) %>%
tally() # Same as summarize(n = n())

# A tibble: 4 x 3
# Groups: gender [2]

gender decision n
<fct> <fct> <int>

1 male not 6
2 male promoted 18
3 female not 7
4 female promoted 17

So in this hypothetical universe of no discrimination:
18/24 = 0.75 = 75% of “male” résumés were selected for promotion.
17/24 = 0.708 = 70.8% of “male” résumés were selected for promotion.

Résumés with male names were selected for promotion at a rate
0.75 − 0.708 = 0.042 = 4.2% higher than résumés with female names.
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Promotions activity: Shuffling 16 times

We recruited 16 groups of our friends to repeat this shuffling exercise.

The distribution of the difference in promotion rates in shown below.

The observed difference in promotion rate that occurred in real life
(0.292 = 29.2%) is depicted with a vertical red line.
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Promotions activity: Shuffling 16 times

Things to note:

Observe first that the histogram is roughly centered at 0 (actual mean
is -0.0260417).

Saying that the difference in promotion rates is 0 is equivalent to saying
that both genders had the same promotion rate.
In other words, the center of these 16 values is consistent with what we
would expect in our hypothesized universe of no gender discrimination.

However, while the values are centered at 0, there is variation about 0.
Even in a hypothesized universe of no gender discrimination, you will
still likely observe small differences in promotion rates because of chance
sampling variation.
Looking at the histogram, such differences could even be as extreme as
-0.2916667 or 0.2083333.
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Fundamental Question of Inference

Ask yourself:
In a hypothesized world of no gender discrimination, how likely would it
be that we observe this difference (0.292 = 29.2%)?

What do these results say about our hypothesized universe of no gender
discrimination?
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What did we just do?

What we just demonstrated in this activity is the statistical procedure
known as hypothesis testing using a permutation test also referred to as
randomization test.

The term “permutation” is the mathematical term for “shuffling”:
taking a series of values and reordering them randomly, as you did with
the playing cards.

In fact, permutations are another form of resampling, like the
bootstrap method you performed earlier.

The bootstrap method involves resampling with replacement.
The permutation method involves resampling without replacement.
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What did we just do?

In our previous example, we tested the validity of the hypothesized universe
of no gender discrimination.
set.seed(37)
promotions %>%

specify(formula = decision ~ gender, success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in props", order = c("male", "female")) -> null_distribution

get_pvalue(null_distribution, obs_stat= .292, direction = "right") -> pv
pv

# A tibble: 1 x 1
p_value

<dbl>
1 0.002

The evidence contained in our observed sample of 48 résumés was
somewhat inconsistent with our hypothesized universe. In the
simulation above only 2 of the 1000 permutations yielded a difference
as extreme or more than the observed difference of 0.292.

Thus, we would be inclined to reject this hypothesized universe and
declare that the evidence suggests there is gender discrimination.
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Section 5

Understanding hypothesis tests
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Understanding hypothesis tests
Terminology, notation, and definitions related to hypothesis testing.

First, a hypothesis is a statement about the value of an unknown
population parameter.

In our résumé activity, our population parameter of interest is the
difference in population proportions pm − pf .
Hypothesis tests can involve any of the population parameters below:
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Understanding hypothesis tests

Second, a hypothesis test consists of a test between two competing
hypotheses:

(1) a null hypothesis H0 (pronounced “H-naught”)
Generally the null hypothesis is a claim that there is “no effect” or “no
difference of interest.”

(2) versus an alternative hypothesis HA (also denoted H1).
Generally the alternative hypothesis is the claim the experimenter or
researcher wants to establish or find evidence to support.
It is viewed as a “challenger” hypothesis to the null hypothesis H0.
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Understanding hypothesis tests

In our résumé activity, an appropriate hypothesis test would be:

H0 : men and women are promoted at the same rate
vs HA : men are promoted at a higher rate than women

Note that:
H0 states there is no difference in promotion rate.
HA states men are promoted at a higher rate than women, a subjective
choice reflecting a prior suspicion we have that this is the case.

We call such alternative hypotheses one-sided alternatives.

If someone else however does not share such suspicions and only wants
to investigate that there is a difference, whether higher or lower, they
would set what is known as a two-sided alternative.
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Understanding hypothesis tests

We can write our hypothesis test using the mathematical notation as:

H0 : pm − pf = 0
vs HA : pm − pf > 0

Here HA is one sided. Had we opted for a two-sided alternative, we would
have written

H0 : pm − pf = 0
vs HA : pm − pf ̸= 0
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Understanding hypothesis tests

Third, a test statistic is a point estimate/sample statistic used for
hypothesis testing.

Note that a sample statistic is merely a summary statistic based on a
sample.
Here, the sample resulted in nm = 24 résumés with male names and the
nf résumés with female names.
Hence, the point estimate of interest is the difference in sample
proportions p̂m − p̂f .

Fourth, the observed test statistic is the value of the test statistic
that we observed in real life.

In our case, p̂m − p̂f = 0.875 − 0.583 = 29.2% in favor of résumés with
male names.
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Understanding hypothesis tests

Fifth, the null distribution is the sampling distribution of the test statistic
assuming the null hypothesis H0 is true.

Let’s unpack it slowly.
The key to understanding the null distribution is that the null hypothesis
H0 is assumed to be true.
In our case, this corresponds to our hypothesized universe of no gender
discrimination in promotion rates.

Assuming the null hypothesis H0, how does the test statistic vary due
to sampling variation?

In our case, we examine the sampling distribution of the difference in
sample proportions p̂m − p̂f .
Recall that distributions displaying how point estimates vary due to
sampling variation are called sampling distributions.
The null distribution is the sampling distribution assuming the null
hypothesis H0 is true.
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Understanding hypothesis tests

The null distribution from 1000 permutations is given below
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Understanding hypothesis tests

Sixth, the p-value is the probability of obtaining a test statistic just as
extreme or more extreme than the observed test statistic assuming the
null hypothesis H0 is true.

You can think of the p-value as a quantification of “surprise”: assuming
H0 is true, how surprised are we with what we observed?
In our case, 2 times out of 1000, we obtained a difference in proportions
greater than or equal to the observed difference of 0.292 = 29.2%.
A very rare outcome if in fact the nulll hypothesis is true!

Given the rarity of such a pronounced difference in promotion rates in
our hypothesized universe of no gender discrimination, we’re inclined to
reject our hypothesized universe.
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Understanding hypothesis tests

Seventh and lastly, in many hypothesis testing procedures, the significance
level of the test is set before evaluating the data.

The significance level is denoted by α.

This value acts as a cutoff on the p-value:
If the p-value falls below the α value we reject the null hypothesis,
H0.
If the p-value does not fall below α value we fail to reject the null
hypothesis, H0.

Some commonly used values for α are 0.1, 0.01, and 0.05; with 0.05
being the choice people often make without putting much thought into
it.
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Section 6

Conducting hypothesis tests
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Conducting hypothesis tests

Earlier we showed how to construct confidence intervals.

Here we will discuss how to modify the previously seen infer code for
constructing confidence intervals to conduct hypothesis tests.
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infer package workflow: specify variables

Recall that we use the specify() verb to specify the response variable and,
if needed, any explanatory variables for our study.
promotions %>%

specify(formula = decision ~ gender, success = "promoted")

Response: decision (factor)
Explanatory: gender (factor)
# A tibble: 48 x 2

decision gender
<fct> <fct>

1 promoted male
2 promoted male
3 promoted male
4 promoted male
5 promoted male
6 promoted male
7 promoted male
8 promoted male
9 promoted male

10 promoted male
# i 38 more rows
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infer package workflow: hypothesize the null

In order to conduct hypothesis tests using the infer workflow, we need a new
step not present for confidence intervals: hypothesize().

H0 : pm − pf = 0
vs HA : pm − pf > 0

We set this null hypothesis H0 in our infer workflow using the null
argument of the hypothesize() function to either:

“point” for hypotheses involving a single sample or
“independence” for hypotheses involving two samples.

Where do the terms “point” and “independence” come from? These are
two technical statistical terms.
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infer package workflow: hypothesize the null

The term “point” relates from the fact that for a single group of
observations, you will test the value of a single point.

Going back to the pennies example, say we wanted to test if the mean
year of all US pennies was equal to 1993 or not.
We would be testing the value of a “point” µ, the mean year of all US
pennies, as follows:

H0 : µ = 1993
vs HA : µ ̸= 1993
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infer package workflow: hypothesize the null

The term “independence” relates to the fact that for two groups of
observations,

you are testing whether or not the response variable is independent of
the explanatory variable that assigns the groups.
In our case, we are testing whether the decision response variable is
“independent” of the explanatory variable gender that assigns each
résumé to either of the two groups.
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infer package workflow: hypothesize the null

promotions %>%
specify(formula = decision ~ gender,

success = "promoted") %>%
hypothesize(null = "independence")
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infer package workflow: generate replicates

After we hypothesize() the null hypothesis, we generate()
replicates of “shuffled” datasets assuming the null hypothesis is true.

For confidence intervals we generated replicates using type =
"bootstrap"- resampling with replacement.

For hypothesis testing we generate replicates using type = "permute"
- resampling without replacement.
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infer package workflow: generate replicates

promotions_generate <- promotions %>%
specify(formula = decision ~ gender,

success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")

Note: we performed shuffles/permutations for each of the 48 rows 1000
times and 48, 000 = 1000 · 48.
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infer package workflow: calculate summary statistics

Now that we have generated 1000 replicates of “shuffles” assuming the null
hypothesis is true, let’s calculate() the appropriate summary statistic for
each of our 1000 shuffles.

the test statistic here is the difference in sample proportions p̂m − p̂f .
we can calculate this test statistic by setting stat = "diff in
props".
Furthermore, since we are interested in p̂m − p̂f , we set order =
c("male", "female").

Note: the order of the subtraction does not matter, so long as you stay
consistent throughout your analysis and tailor your interpretations
accordingly.
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infer package workflow: calculate summary statistics

set.seed(37)
promotions %>%

specify(formula = decision ~ gender, success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in props", order = c("male", "female")) -> null_distribution

null_distribution

Response: decision (factor)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2

replicate stat
<int> <dbl>

1 1 -0.125
2 2 -0.0417
3 3 -0.0417
4 4 -0.0417
5 5 -0.125
6 6 0.125
7 7 0.125
8 8 -0.125
9 9 0.125

10 10 -0.292
# i 990 more rows
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infer package workflow: calculate summary statistics

What was the observed difference in promotion rates?
obs_diff_prop <- promotions %>%

specify(decision ~ gender, success = "promoted") %>%
calculate(stat = "diff in props",

order = c("male", "female"))
obs_diff_prop

Response: decision (factor)
Explanatory: gender (factor)
# A tibble: 1 x 1

stat
<dbl>

1 0.292
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infer package workflow: visualize the p-value

The final step is to measure how surprised we are by a promotion difference
of 29.2% in a hypothesized universe of no gender discrimination

Furthermore, we’ll set the direction = “right” reflecting our alternative
hypothesis HA : pm − pf > 0. Set direction = "both" for
two-sided HA : pm − pf ̸= 0.

visualize(null_distribution, bins = 10) +
shade_p_value(obs_stat = obs_diff_prop, direction = "right") +
theme_bw()
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infer package workflow: visualize the p-value

However, what does the shaded-region correspond to? This is the
p-value.

A p-value is the probability of obtaining a test statistic just as or more
extreme than the observed test statistic assuming the null hypothesis H0
is true.

So judging by the shaded region in the figure, it seems we would
somewhat rarely observe differences in promotion rates of
0.292 = 29.2% or more in a hypothesized universe of no gender
discrimination.

null_distribution %>%
get_p_value(obs_stat = 0.292, direction = "right")

# A tibble: 1 x 1
p_value

<dbl>
1 0.002
# Or
mean(null_distribution$stat >= 0.292)

[1] 0.002
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infer package workflow: visualize the p-value

Since this p-value is smaller than our pre-specified significance level
α = 0.05, we reject the null hypothesis H0 : pm − pf = 0.

In other words, this p-value is sufficiently small to reject our
hypothesized universe of no gender discrimination.

We instead have enough evidence to change our mind in favor of
gender discrimination being a likely culprit here.
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Comparison with confidence intervals

This is the entire code that creates the null distribution.
set.seed(37)
null_distribution <- promotions %>%

specify(formula = decision ~ gender,
success = "promoted") %>%

hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in props",

order = c("male", "female"))
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Comparison with confidence intervals

We need to make two changes two changes to create the bootstrap
distribution needed to construct a 95% confidence interval for pm − pf .
bootstrap_distribution <- promotions %>%

specify(formula = decision ~ gender,
success = "promoted") %>%

# Change 1 - Remove hypothesize():
# hypothesize(null = "independence") %>%
# Change 2 - Switch type from "permute" to "bootstrap":
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "diff in props",

order = c("male", "female"))
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Comparison with confidence intervals
percentile_ci <- bootstrap_distribution %>%

get_confidence_interval(level = 0.95, type = "percentile")
percentile_ci

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 0.0414 0.535
visualize(bootstrap_distribution) +

shade_confidence_interval(endpoints = percentile_ci) +
theme_bw()
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Notice how the value 0 is not included in our confidence interval, again
suggesting that pm and pf are truly different!
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Summary

If you can understand the framework, you can easily generalize these
ideas for all hypothesis testing scenarios. Whether for:

population proportions p
population means µ
differences in population proportions p1 − p2
differences in population means µ1 − µ2
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Section 7

Interpreting hypothesis tests
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Interpreting hypothesis tests

We mentioned that given a pre-specified significance level α there are
two possible outcomes of a hypothesis test:

If the p-value is less than α then we reject the null hypothesis H0 in
favor of HA.
If the p-value is greater than α then we fail to reject the null
hypothesis H0.

Unfortunately, the latter result is often misinterpreted as “accepting
the null hypothesis H0.

Saying that we “accept the null hypothesis H0” is equivalent to stating
that “we think the null hypothesis H0 is true.
Saying that we “fail to reject the null hypothesis H0” is saying
something else: “While H0 might still be false, we don’t have enough
evidence to say so.”
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Interpreting hypothesis tests

Let’s use the United States criminal justice system as an analogy.

A criminal trial in the United States is a similar situation to hypothesis
tests whereby a choice between two contradictory claims must be made
about a defendant who is on trial:

The defendant is truly either “innocent” (H0) or “guilty.”(HA)
The defendant is presumed “innocent until proven guilty.”
The defendant is found guilty only if there is strong evidence that the
defendant is guilty. The phrase “beyond a reasonable doubt”
(significance level α) is often used as a guideline for determining a cutoff
for when enough evidence exists to find the defendant guilty.
The defendant is found to be either “not guilty”(fail to reject H0) or
“guilty” in the ultimate verdict.

In other words, not guilty verdicts are not suggesting the defendant is
innocent.
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Types of errors

Nobody’s perfect. Even with lots of evidence, we can still make wrong
decisions.

In fact, when we perform a hypothesis test, we can make mistakes in
two ways:

Type I Error: The null hypothesis is true, but we miskakenly reject it.
Type II Error: The null hypothesis is false, but we fail to reject it.

One way to keep the names straight is to remember that we start by
assuming the null hypothesis is true, so Type I error is the first kind of
error we could make.
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Types of errors

The Type I and II errors can be illustrated in the Table of TRUTH below:

We apply these terms to our criminal justice analogy
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Probabilities of Type I and II Errors

P (Type I Error) = P (Reject H0|H0 true) = α

This represents the probability that if H0 is true then we will reject H0.
Type I error occurs when the null hypothesis is true but we’ve had the
bad luck to draw an unusual sample.
If you have a small p-value, you could make this error. Because P-value
≤ α =⇒ Reject H0

P (Type II Error) = P (Fail to reject H0|H0 false) = β

The probability of failing to reject a false null hypothesis is a Type II
error.
Harder to calculate β. This is because when H0 is false, we don’t know
the parameter value and there are many possible values.
If you have a large p-value, you could make this error.
The value 1 − β is known as the power of the hypothesis test.
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Relationship Between Sample Size, Errors, and Power

Below we test:

H0 : p = p0

vs.

HA : p > po

The top figure, p0 is the true proportion.
A high p̂ results in a Type I error.

The bottom figure, p is the true proportion with a distribution of
possible observed p̂ values around this true value.

Because of this sampling variability, sometimes p̂ < p∗ and we fail to
reject the false null hypothesis

A low p̂ near p0 results in a Type II error.

Spring 2024 (Appalachian State University) STT 3850 : Weeks 11, 12, and 13 121 / 122



Relationship Between Errors, and Power

Decreasing α results in an increase of β (reduce power).

What is typically done in practice is to fix the probability of a Type I
error by pre-specifying a significance level α and then try to minimize
β.

For a given α level, to reduce β (increase power), one MUST increase
sample size!

SD goes down.
β goes down and power increases.
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