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Section 1

Outline for the week
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By the end of the week: Bootstrapping and Confidence
Intervals

Key features of the Bootstrap and understanding confidence intervals

Constructing and interpreting confidence intervals

Two sample bootstrap

Theory-based confidence intervals (mean (sigma known) , mean (sigma
unknown), assumptions underlying t-confidence interval)
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Section 2

Key features of the Bootstrap
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Needed packages

library(tidyverse)
library(moderndive)
library(infer)
library(resampledata)
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Key features of the Bootstrap: Example 1

To highlight some key features of the bootstrap distribution:

Consider two examples in which the theoretical sampling distributions
of the mean are known.

Example 1: Consider a random sample of size 49 drawn from a
N(25, 7).

Theory tells us that that the sampling distribution of the sample means
is normal with mean 25 and standard error σx̄ = 7/

√
49 = 1.
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Key features of the Bootstrap: Example 1
set.seed(11)
par(mfrow = c(3, 2))
curve(dnorm(x, 25, 7), from = 25 - 2.5*7, 25 + 2.5*7, col = "blue", main = "N(25, 7)", ylab = "", xlab = "")
abline(v = 25, col = "red")
curve(dnorm(x, 25, 1), from = 25 - 2.5*7, 25 + 2.5*7, col = "blue", main = "N(25, 1)", ylab = "", xlab = "")
abline(v = 25, col = "red")
rs1 <- rnorm(49, 25, 7)
rs2 <- rnorm(49, 25, 7)
hist(rs1, xlab = "", main = "n = 49")
abline(v = mean(rs1), col = "red")
B <- 10000
my.boot.stat1 <- numeric(B)
my.boot.stat2 <- numeric(B)
for (i in 1:B){

x1 <- sample(rs1, size = 49, replace = TRUE)
x2 <- sample(rs2, size = 49, replace = TRUE)
my.boot.stat1[i] <- mean(x1)
my.boot.stat2[i] <- mean(x2)

}
hist(my.boot.stat1, breaks = "Scott", main ="Bootstrap Distribution", freq= FALSE, xlab = "",
xlim = c(25 - 2.5*7, 25 + 2.5*7))
abline(v = mean(rs1), col = "red")
hist(rs2, xlab = "", main = "n = 49")
abline(v = mean(rs2), col = "red")
hist(my.boot.stat2, breaks = "Scott", main ="Bootstrap Distribution", freq= FALSE, xlab = "",
xlim = c(25 - 2.5*7, 25 + 2.5*7))
abline(v = mean(rs2), col = "red")
c(mean(rs1), sd(rs1), mean(rs2), sd(rs2),

mean(my.boot.stat1), sd(my.boot.stat1), mean(my.boot.stat2), sd(my.boot.stat2))
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Key features of the Bootstrap: Example 1
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Key features of the Bootstrap: Example 1

The previous code shows the distributions of two such random samples
with sample means:

x̄1 = 22.9402808 and, x̄2 = 25.1793901
s1 = 5.9322341 and, s2 = 6.6413206

Based on the graphs above, we can see that the bootstrap distribution:
has roughly the same spread and shape as the theoretical sampling
distribution,
but the centers are different compared to the theoretical sampling
distribution.
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Key features of the Bootstrap: Example 1

This example illustrates some important features of the bootstrap that
hold for other statistics besides the mean:

the bootstrap distribution of a particular statistic θ̂ has approximately
the same spread and shape as the sampling distribution of the statistic θ̂,
but
the center of the bootstrap distribution is at the center of the original
sample.

Hence we do not use the center of the bootstrap distribution in its own
right, but we do compare the center of the bootstrap distribution with
the observed statistic; if they differ, it indicates bias.

For most statistics, bootstrap distributions approximate the spread,
bias, and shape of the actual sampling distribution.
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Key features of the Bootstrap: Example 2

We now consider an example where neither the population nor the sampling
distribution is normal.

A random variable X that has a Gamma distribution is written
X ∼ Γ(α, λ).

If X is a Gamma random variable, then:

E[X] = α/λ and V ar[X] = α/λ2.

Let X1, . . . , Xn ∼ Γ(α = 1, λ = 1/2).
It is a fact that the sampling distribution of the mean X̄ is
Γ(nα = 16 · 1 = 16, nλ = 16/2 = 8).

We draw a random sample of size n = 16 from a Γ(α = 1, λ = 1/2)
(population mean: α/λ = 2, standard deviation:√

α/λ2 = 1/(1/2)2) = 2).
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Key features of the Bootstrap: Example 2

set.seed(281)
par(mfrow = c(3, 2))
curve(dgamma(x, 1, 1/2), from = 0, to = 8, col = "blue", main = "Gamma(1, 1/2)", ylab = "", xlab = "")
abline(v = 2, col = "red")
curve(dgamma(x, 16, 8), from = 0, 8, col = "blue", main = "Gamma(16, 8)", ylab = "", xlab = "")
abline(v = 2, col = "red")
rsg1 <- rgamma(16, 1, 1/2)
rsg2 <- rgamma(16, 1, 1/2)
hist(rsg1, xlab = "", main = "n = 16", xlim = c(0, 8))
abline(v = mean(rsg1), col = "red")
B <- 10000
my.boot.statg1 <- numeric(B)
my.boot.statg2 <- numeric(B)
for (i in 1:B){

xg1 <- sample(rsg1, size = 16, replace = TRUE)
xg2 <- sample(rsg2, size = 16, replace = TRUE)
my.boot.statg1[i] <- mean(xg1)
my.boot.statg2[i] <- mean(xg2)

}
hist(my.boot.statg1, breaks = "Scott", main ="Bootstrap Distribution", freq= FALSE, xlab = "",
xlim = c(0, 8))
abline(v = mean(rsg1), col = "red")
hist(rsg2, xlab = "", main = "n = 16", xlim = c(0, 8))
abline(v = mean(rsg2), col = "red")
hist(my.boot.statg2, breaks = "Scott", main ="Bootstrap Distribution", freq= FALSE, xlab = "",
xlim = c(0, 8))
abline(v = mean(rsg2), col = "red")
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Key features of the Bootstrap: Example 2
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Key features of the Bootstrap: Example 2

The first graph in the second and third rows shows the distribution of a
random sample with sample means and standard deviations

x̄1 = 2.7101126 and, x̄2 = 1.404806
s1 = 1.98708 and, s2 = 1.79941

Based on the graphs above, we can see that the bootstrap distribution:
has roughly the same spread and shape as the theoretical sampling
distribution,
but the centers are different compared to the theoretical sampling
distribution.
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Key features of the Bootstrap

For most common estimators and under fairly general distribution
assumptions, the following need to be noted:

Center: The center of the bootstrap distribution is not an accurate
approximation for the center of the sampling distribution.

For example, the center of the bootstrap distribution for X̄ is centered
at approximately x̄ = µF̂ , the mean of the sample, whereas
the sampling distribution is centered at µ.

Spread: The spread of the bootstrap distribution does reflect the
spread of the sampling distribution.

Bias: The bootstrap bias estimate does reflect the bias of the sampling
distribution. Bias occurs if a sampling distribution is not centered at
the parameter.

Skewness: The skewness of the bootstrap distribution does reflect the
skewness of the sampling distribution.
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Key features of the Bootstrap

The first point bears emphasis.
It means that the bootstrap is not used to get better parameter
estimates because the bootstrap distributions are centered around
statistics θ̂ calculated from the data rather than unknown population
values.
Drawing thousands of bootstrap observations from the original data is
not like drawing observations from the underlying population, it does not
create new data.

Instead, the bootstrap distribution is useful for quantifying the behavior
of a parameter estimate such as its :

standard error,
skewness, bias, or
for calculating confidence intervals.
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Key features of the Bootstrap: Example 3

Arsenic is a naturally occurring element in the groundwater of
Bangladesh. However, much of this groundwater is used for drinking
water by rural populations, so arsenic poisoning is a serious health is-
sue. Figure 1a displays the distribution of arsenic concentrations from
271 wells in Bangladesh. The sample mean and standard deviation are
x̄ = 125.32 and s = 297.98, respectively (measured in micrograms
per liter). We draw resamples of size 271 with replacement from the
data and compute the mean for each resample.
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Key features of the Bootstrap: Example 3

par(mfrow = c(2, 2))
Bang <- Bangladesh
Arsenic <- Bang$Arsenic
hist(Arsenic, breaks = "Scott", main = "Figure 1a", col = "lightblue")
qqnorm(Arsenic, main = "Figure 1b")
qqline(Arsenic, col = "red")
B <- 10000
n <- sum(!is.na(Arsenic))
arsenic.mean <- numeric(B)
set.seed(7)
for (i in 1:B){

bss <- sample(Arsenic, size = n, replace = TRUE)
arsenic.mean[i] <- mean(bss)

}
hist(arsenic.mean, main = "Figure 2a", col = "lightblue", breaks = "Scott",

xlab = substitute(paste(bar(X),"*")))
qqnorm(arsenic.mean, main = "Figure 2b")
qqline(arsenic.mean, col = "red")
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Key features of the Bootstrap: Example 3
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Key features of the Bootstrap: Example 3

Figures 2a and 2b show a histogram and a normal quantile plot of the
bootstrap distribution, respectively.

The bootstrap distribution looks quite normal, with some skewness.

This is the central limit theorem at work—when the sample size is
large enough, the sampling distribution for the mean is approximately
normal, even if the population is not normal.
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Section 3

Understanding confidence intervals
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Understanding confidence intervals

Let’s start this section with an analogy involving fishing. Say you are
trying to catch a fish.

On one hand, you could use a spear, while on the other
you could use a net. Using the net will probably allow you to catch more
fish!

Now think back to our pennies exercise where you are trying to
estimate the true population mean year µ of all US pennies.

Think of the value of µ as a fish.

pennies_sample %>%
summarize(xbar_year = mean(year))

# A tibble: 1 x 1
xbar_year

<dbl>
1 1995.
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Understanding confidence intervals

On the one hand, we could use the appropriate point estimate/sample
statistic to estimate µ, with the sample mean x̄.

Based on our sample of 50 pennies from the bank (using the tibble
pennies_sample), the sample mean of year was 1995.44.

Think of using this value as “fishing with a spear.”

What would “fishing with a net” correspond to?
The bootstrap distribution.
Between which two years would you say that “most” sample means lie?
While this question is somewhat subjective, saying that most sample
means lie between 1992 and 2000 would not be unreasonable.
Think of this interval as the “net.”

What we’ve just illustrated is the concept of a confidence interval,
which we’ll abbreviate with “CI”.

Spring 2024 (Appalachian State University) STT 3850 : Week 10 23 / 122



Understanding confidence intervals

As opposed to a point estimate/sample statistic that estimates the
value of an unknown population parameter with a single value, a
confidence interval gives what can be interpreted as a range of
plausible values.

Going back to our analogy, point estimates/sample statistics can be
thought of as spears, whereas confidence intervals can be thought of as
nets.
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Percentile method

pennies_sample %>%
specify(response = year) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "mean") -> bs_dist

bs_dist %>%
summarize(lci = quantile(stat, probs = 0.025),

uci = quantile(stat, probs = 0.975)) -> CI
CI

# A tibble: 1 x 2
lci uci

<dbl> <dbl>
1 1991. 2000.
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Percentile method
get_confidence_interval(bs_dist, level = 0.95)

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 1991. 2000.

visualize(bs_dist) +
shade_confidence_interval(endpoints = CI)
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Figure 1: Bootstrap Distribution with percentile CI limits
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Percentile method

One method to construct a confidence interval

To get the middle 95% of values of the bootstrap distribution:
We can do this by computing the 2.5th and 97.5th percentiles,
which are 1991 and 2000, respectively.
This is known as the percentile method for constructing confidence
intervals.

# Using a for loop to do the same thing
B <- 1000
bm <- numeric(B)
for(i in 1:B){

bss <- sample(pennies_sample$year, size = 50, replace = TRUE)
bm[i] <- mean(bss)

}
quantile(bm, probs = c(0.025, 0.975))

2.5% 97.5%
1991.519 1999.681
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Standard error method

Given that our bootstrap distribution based on 1000 resamples with
replacement in Figure 1 is normally shaped,

let’s use this fact about normal distributions to construct a confidence
interval in a different way.

First, note that the bootstrap distribution has a mean equal to 1995.43
(using infer or 1995.52 the for loop).

This value almost coincides exactly with the value of the sample mean x̄
of our original 50 pennies of 1995.44.

Second, let’s compute the standard deviation of the bootstrap
distribution using the values of mean_year in the
virtual_resampled_means data frame:
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Standard error method

set.seed(10)
virtual_resampled_means <- pennies_sample %>%

rep_sample_n(size = 50, replace = TRUE, reps = 1000) %>%
group_by(replicate) %>%
summarize(mean_year = mean(year))

virtual_resampled_means %>%
summarize(SE = sd(mean_year)) -> ans

ans

# A tibble: 1 x 1
SE

<dbl>
1 2.14

# Or
sd(bm)

[1] 2.14079
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Standard error method

Recall that for a normal distribution, roughly 95% of values fall between
±1.96 standard deviations of the mean.

Thus, using our 95% rule of thumb about normal distributions, we can
use the following formula to determine the lower and upper endpoints
of a 95% confidence interval for µ.

x̄ ± 1.96 · SE = (x̄ − 1.96 · SE, x̄ + 1.96 · SE)
= (1995.44 − 1.96 · 2.14, 1995.44 + 1.96 · 2.14)
= (1991.25, 1999.63)

mean(pennies_sample$year) +c(-1, 1)*qnorm(.975)*ans$SE

[1] 1991.251 1999.629
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Standard error method vs. Percentile method

We see that both methods produce nearly identical 95% confidence
intervals for µ

with the percentile method yielding (1991, 2000)
while the standard error method produces (1991.25, 1999.63)

However, we can only use the standard error rule when the bootstrap
distribution is roughly normally shaped.
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Section 4

Constructing confidence intervals
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Percentile method example: Pennies Activity

Using rep_sample_n from the infer package.
set.seed(10)
virtual_resampled_means <- pennies_sample %>%

rep_sample_n(size = 50, replace = TRUE, reps = 1000) %>%
group_by(replicate) %>%
summarize(mean_year = mean(year))

ggplot(virtual_resampled_means, aes(x = mean_year)) +
geom_histogram(binwidth = 1, color = "white", boundary = 1990) +
labs(x = "sample mean") +
theme_bw()
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Percentile method example: Pennies Activity

Using rep_sample_n from the infer package.
quantile(virtual_resampled_means$mean_year,

prob = c(0.025, 0.975))

2.5% 97.5%
1991.099 1999.460

Spring 2024 (Appalachian State University) STT 3850 : Week 10 34 / 122



Percentile method example: Pennies Activity

Using the infer pipeline
set.seed(10)
bootstrap_distribution <- pennies_sample %>%

specify(response = year) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "mean")

visualize(bootstrap_distribution)
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Percentile method example: Pennies Activity

Using the infer pipeline
percentile_ci <- bootstrap_distribution %>%

get_confidence_interval(level = 0.95, type = "percentile")
percentile_ci

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 1991. 1999.
visualize(bootstrap_distribution) +

shade_confidence_interval(endpoints = percentile_ci)

0

50

100

150

1992 1996 2000
stat

co
un

t

Simulation−Based Bootstrap Distribution

Spring 2024 (Appalachian State University) STT 3850 : Week 10 36 / 122



Standard error example: Pennies Activity

Using the infer pipeline
x_bar <- pennies_sample %>% summarize(mean_year = mean(year))
standard_error_ci <- bootstrap_distribution %>%

get_confidence_interval(type = "se", point_estimate = x_bar, level = 0.95)
standard_error_ci

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 1991. 2000.
visualize(bootstrap_distribution) +

shade_confidence_interval(endpoints = standard_error_ci)
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Percentile method example: Birth weight of a baby

Using the infer pipeline
library(resampledata)
Babies <- NCBirths2004
set.seed(13)
bsd <- Babies %>%

specify(response = Weight) %>%
generate(reps = 10ˆ4, type = "bootstrap") %>%
calculate(stat = "mean")

visualize(bsd)
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Percentile method example: Birth weight of a baby

Using the infer pipeline
percentile_ci <- bsd %>%

get_confidence_interval(level = 0.95, type = "percentile")
percentile_ci

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 3418. 3477.
visualize(bsd) +

shade_confidence_interval(endpoints = percentile_ci)
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Standard error example: Birth weight of a baby

Using the infer pipeline
x_bar_babies <- Babies %>% summarize(Mean = mean(Weight))
standard_error_ci <- bsd %>%

get_confidence_interval(type = "se", point_estimate = x_bar_babies, level = 0.95)
standard_error_ci

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 3419. 3478.
visualize(bsd) +

shade_confidence_interval(endpoints = standard_error_ci)
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Section 5

Interpreting confidence intervals
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Interpreting confidence intervals

Now that we’ve shown you how to construct confidence intervals using
a sample drawn from a population, let’s now focus on how to interpret
their effectiveness.

The effectiveness of a confidence interval is judged by whether or not it
contains the true value of the population parameter.

Going back to our fishing analogy, this is like asking, “Did our net
capture the fish?”.

So, for example, does our percentile-based confidence interval of
(1991.4, 1999.5605) “capture” the true mean year µ of all US pennies?
Alas, we’ll never know, because we don’t know what the true value of µ
is.
After all, we’re sampling to estimate it!
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Interpreting confidence intervals

In order to interpret a confidence interval’s effectiveness, we need to
know what the value of the population parameter is.

That way we can say whether or not a confidence interval “captured”
this value.

Let’s revisit our sampling bowl example. What proportion of the bowl’s
2400 balls are red? Let’s compute this:

bowl %>% summarize(p_red = mean(color == "red"))

# A tibble: 1 x 1
p_red
<dbl>

1 0.375

In this case we know that the population proportion p is 0.375. In other
words, we know that 37.5% of the bowl’s balls are red.
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Interpreting confidence intervals
Recall that we had 33 groups of friends each take samples of size 50
from the bowl and then compute the sample proportion of red balls p̂.

Let’s use the bowl_sample_1 data frame in the moderndive package
head(bowl_sample_1, n = 3)

# A tibble: 3 x 1
color
<chr>

1 white
2 white
3 red

bowl_sample_1 %>%
summarize(p_hat = mean(color == "red"))

# A tibble: 1 x 1
p_hat
<dbl>

1 0.42

They observed 21 red balls out of 50 and thus their sample proportion
p̂ = 21/50 = 0.42 = 42%.

Think of this as the “spear” from our fishing analogy.
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Percentile method example: sampling bowl example

Using the infer pipeline
set.seed(10)
sample_1_bootstrap <- bowl_sample_1 %>%

specify(response = color, success = "red") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop")

percentile_ci_1 <- sample_1_bootstrap %>%
get_confidence_interval(level = 0.95, type = "percentile")

percentile_ci_1

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 0.3 0.56
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Percentile method example: sampling bowl example

Using the infer pipeline
sample_1_bootstrap %>%

visualize(bins = 15) +
shade_confidence_interval(endpoints = percentile_ci_1) +
geom_vline(xintercept = 0.42, linetype = "dashed")
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In this case the 95% confidence interval for p, (0.3, 0.56), contains the true
value of 0.375.
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Interpreting confidence intervals: Sampling bowl example

However, will every 95% confidence interval for p capture this value?

Let’s now repeat this process 100 more times: we take 100 virtual
samples from the bowl and construct 100 95% confidence intervals.

Of the 100 95% confidence intervals, 95 of them captured the true
value p = 0.375, whereas 5 of them didn’t.

This is where the “95% confidence level” comes into play.
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Interpreting confidence intervals: Sampling bowl example

Below is a graph for 100 80% confidence intervals.

Of the 100 80% confidence intervals, 82 of them captured the true
value p = 0.375, whereas 18 of them didn’t.
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Interpreting confidence intervals

The precise and mathematically correct interpretation of a 95% confidence
interval is a little long-winded:

Precise interpretation: If we repeated our sampling procedure a large
number of times, we expect about 95% of the resulting confidence
intervals to capture the value of the population parameter.

The shorthand summary of the precise interpretation:

Short-hand interpretation: We are 95% “confident” that a 95%
confidence interval captures the value of the population parameter.
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Width of confidence intervals

Let’s go over some factors that determine their width.
1 Impact of confidence level.
2 Impact of sample size.
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Section 6

Two Sample Boostrap

Spring 2024 (Appalachian State University) STT 3850 : Week 10 51 / 122



Two Sample Boostrap

We now turn to the problem of comparing two samples.

In general, bootstrapping should mimic how the data were obtained.
So the data correspond to independent samples from two populations,
we should draw the samples that way.

Then we proceed to compute the same statistic comparing the samples
as per the original data, for example, difference in means or ratio of
proportions.
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Two Sample Boostrap

Given independent samples of sizes m and n from two populations,
1 Draw a resample of size m with replacement from the first sample and

a separate resample of size n for the second sample. Compute a
statistic that compares the two groups, such as the difference between
the two sample means.

2 Repeat this resampling process many times say 10,000.
3 Construct the bootstrap distribution of the statistic. Inspect its spread,

bias, and shape.
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TV example

A high school student was curious about the total number of minutes
devoted to commercials during any given half-hour time period on
basic and extended cable TV channels.

Lets use the TV dataset from the resampledata package.
library(resampledata)
library(tidyverse)
library(moderndive)
library(infer)
head(TV)

ID Times Cable
1 1 7.0 Basic
2 2 10.0 Basic
3 3 10.6 Basic
4 4 10.2 Basic
5 5 8.6 Basic
6 6 7.6 Basic
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TV example
ct <- tapply(TV$Times, TV$Cable, mean)
ct

Basic Extended
9.21 6.87

# Tidy approach
TV %>%

group_by(Cable) %>%
summarize(Means = mean(Times), n = n())

# A tibble: 2 x 3
Cable Means n
<fct> <dbl> <int>

1 Basic 9.21 10
2 Extended 6.87 10

The means of the basic and extended channel commercial times are
9.21 and 6.87 min.

Is this difference of 2.34 min. statistically significant?
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TV example

The original data are simple random samples of size 10 from two
populations.

We draw a bootstrap sample from the basic channel data and
independently draw a bootstrap sample from the extended channel data,
compute the means for each sample, and take the difference.
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TV example

times.Basic <- subset(TV, select = Times,
subset = Cable == "Basic", drop = TRUE)

times.Ext <- subset(TV, select = Times,
subset = Cable == "Extended", drop = TRUE)

B <- 10ˆ4
times.diff.mean <- numeric(B)
set.seed(5)
for (i in 1:B){

Basic.sample <- sample(times.Basic,
size = sum(!is.na(times.Basic)), replace = TRUE)

Ext.sample <- sample(times.Ext,
size = sum(!is.na(times.Ext)), replace = TRUE)

times.diff.mean[i] <- mean(Basic.sample) - mean(Ext.sample)
}
opar <- par(no.readonly = TRUE)
par(mfrow=c(1, 2))
CI <- quantile(times.diff.mean, prob = c(0.025, 0.975))
CI

2.5% 97.5%
0.90 3.86

Spring 2024 (Appalachian State University) STT 3850 : Week 10 57 / 122



TV example
par(mfrow = c(1, 2))
hist(times.diff.mean, breaks = "Scott", freq=FALSE,

main = "Bootstrap Distribution \n (Figure a)",
xlab = substitute(paste(bar(x)[1],"*", - bar(x)[2],"*")),
col = "lightblue")

abline(v = c(0, CI), col = c("blue", "red", "red"), lwd = 2,
lty = c("solid", "dashed", "dashed"))

qqnorm(times.diff.mean, main = "Normal Q-Q Plot \n (Figure b)")
qqline(times.diff.mean, col = "red")
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sd(times.diff.mean) -> SEbdm
SEbdm

[1] 0.7552861
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TV example
Figure a shows the bootstrap distribution of the difference of sample
means.

As in the single sample case, we see that the bootstrap distribution is
approximately normal and centered at the original statistics (the
difference in sample means).
We also get a quick idea of how much the difference in sample means
varies due to random sampling.
We may quantify this variation by computing the bootstrap standard
error, which is 0.7552861. Again, the bootstrap standard error is the
standard error of the sampling distribution.

The right panel of Figure b shows a normal-quantile plot for the
bootstrap distribution: the distribution is very close to normal.

The 95% bootstrap percentile confidence interval for the difference in
means (basic- extended) is (0.9, 3.86).

Thus, we are 95% confident that commercial times on basic channels
are, on average, between 0.9 and 3.86 min.
longer than on extended channels (per half-hour time periods).Spring 2024 (Appalachian State University) STT 3850 : Week 10 59 / 122



TV example

Using the infer pipeline
set.seed(5)
TV %>%

specify(Times ~ Cable) %>%
generate(reps = 10ˆ4 - 1, type = "bootstrap") %>%
calculate(stat = "diff in means", order = c("Basic", "Extended")) -> bootdist

visualize(bootdist) + theme_bw() +
labs(x = substitute(paste(bar(x)[basic],"*", - bar(x)[extended],"*")))
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TV example

Using the infer pipeline
get_confidence_interval(bootdist, level = 0.95) -> CI2
CI2

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 0.827 3.85
###
visualize(bootdist) + theme_bw() +

labs(x = substitute(paste(bar(x)[basic],"*", - bar(x)[extended],"*"))) +
shade_confidence_interval(endpoints = CI2) +
geom_vline(xintercept = 0, color = "purple", size = 2)

0

500

1000

1500

2000

0 2 4 6
xbasic*− xextended*

co
un

t

Simulation−Based Bootstrap Distribution

Spring 2024 (Appalachian State University) STT 3850 : Week 10 61 / 122



Verizon example

Verizon is the primary local telephone company (incumbent local
exchange carrier, ILEC) for a large area of the eastern United States.
As such it is responsible for providing repair service for the customers
of other telephone companies known as competing local exchange
carriers (CLECs) in this region. Verizon is subject to fines if the repair
times (the time it takes to fix a problem) for CLEC customers are
substantially worse than those for Verizon customers. The data set
Verizon contains a random sample of repair times for 1664 ILEC and
23 CLEC customers.
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Verizon example

Phone <- Verizon
rt <- tapply(Phone$Time, Phone$Group, mean)
rt

CLEC ILEC
16.509130 8.411611

# Tidy approach
Phone %>%

group_by(Group) %>%
summarize(Mean = mean(Time), n = n(), SD = sd(Time))

# A tibble: 2 x 4
Group Mean n SD
<fct> <dbl> <int> <dbl>

1 CLEC 16.5 23 19.5
2 ILEC 8.41 1664 14.7
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Verizon example
par(mfrow = c(1, 2))
times.ILEC <- subset(Phone, select = Time, subset = Group == "ILEC", drop = TRUE)
B <- 10ˆ4
ILECmean <- numeric(B)
set.seed(3)
for (i in 1:B){
ILECmean[i] <- mean(sample(times.ILEC, size = length(times.ILEC), replace = TRUE))

}
opar <- par(no.readonly = TRUE)
par(mfrow=c(1, 2))
hist(ILECmean, breaks = "Scott", col = "lightblue",

main = "Bootstrap Distribution \n Figure a",
freq= FALSE, xlab = substitute(paste(bar(x),"*")))

qqnorm(ILECmean, main = "Normal Q-Q Plot \n Figure b")
qqline(ILECmean, col = "red")
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Verizon example

The bootstrap distribution for the larger ILEC data set (n = 1664) is
shown in Figure a.

The distribution is centered around the sample mean of 8.4151654,
has a relatively narrow spread primarily due to the large sample size,
with the bootstrap standard error of 0.361873 and
a 95% bootstrap percentile interval of (7.725662, 9.1467858).
The distribution is roughly symmetric, with little skewness.

sd(ILECmean)

[1] 0.361873

CI <- quantile(ILECmean, prob = c(0.025, 0.975))
CI

2.5% 97.5%
7.725662 9.146786
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Verizon example

The bootstrap distribution for the smaller CLEC data set (n=23)
par(mfrow = c(1, 2))
times.CLEC <- subset(Phone, select = Time, subset = Group == "CLEC", drop = TRUE)
B <- 10ˆ4
CLECmean <- numeric(B)
set.seed(2)
for (i in 1:B){
CLECmean[i] <- mean(sample(times.CLEC, size = length(times.CLEC), replace = TRUE))

}
opar <- par(no.readonly = TRUE)
par(mfrow=c(1, 2))
hist(CLECmean, breaks = "Scott", col = "lightblue",

main = "Bootstrap Distribution \n Figure a",
freq= FALSE, xlab = substitute(paste(bar(x),"*")))

qqnorm(CLECmean, main = "Normal Q-Q Plot \n Figure b")
qqline(CLECmean, col = "red")
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Verizon example

The bootstrap distribution for the smaller CLEC data set (n=23) is
shown in Figure a.

c(sd(CLECmean), mean(CLECmean))

[1] 4.022913 16.572639

CIC <- quantile(CLECmean, prob = c(0.025, 0.975))
CIC

2.5% 97.5%
10.19477 25.48828

The distribution is centered around the sample mean of 16.5726391,
has a much larger spread due to the small sample size, with the
bootstrap standard error of 4.022913 and a 95% bootstrap percentile
interval of (10.1947717, 25.4882826).
The distribution is very skewed.
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Verizon example

Distribution of the difference:
B <- 10ˆ4
diffmeans <- numeric(B)
set.seed(1)
for (i in 1:B){

ILEC.sample <- sample(times.ILEC, size = length(times.ILEC),
replace = TRUE)

CLEC.sample <- sample(times.CLEC, size = length(times.CLEC),
replace = TRUE)

diffmeans[i] <- mean(ILEC.sample) - mean(CLEC.sample)
}
CIdiff <- quantile(diffmeans, prob = c(0.025, 0.975))
CIdiff

2.5% 97.5%
-17.181759 -1.671277
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Verizon example

Distribution of the difference:
par(mfrow=c(1, 2))
hist(diffmeans, breaks = "Scott", col = "lightblue",

main = "Bootstrap Distribution \n Figure a",
freq= FALSE, xlab = substitute(paste(bar(x)[ILEC],"*", - bar(x)[CLEC],"*")))

abline(v = c(CIdiff, 0), col = c("blue", "blue", "red"), lwd = 2,
lty = c("dashed", "dashed", "solid"))

qqnorm(diffmeans, main = "Normal Q-Q Plot \n Figure b")
qqline(diffmeans, col = "red")

Bootstrap Distribution 
 Figure a

xILEC*− xCLEC*

De
ns

ity

−30 −25 −20 −15 −10 −5 0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

−4 −2 0 2 4

−3
0

−2
5

−2
0

−1
5

−1
0

−5
0

Normal Q−Q Plot 
 Figure b

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

c(mean(diffmeans), sd(diffmeans))

[1] -8.076052 4.016385
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Verizon example

The bootstrap distribution for the difference in means is shown in
Figure a.

Note the strong skewness in the distribution.
The mean of the bootstrap distribution is -8.0760517 with a standard
error of 4.016385.
A 95% bootstrap percentile confidence interval for the difference in
means (ILEC-CLEC) is given by (-17.1817594, -1.6712775).
and so we would say that with 95% confidence, the repair times for ILEC
customers are, on average, 1.6712775 to 17.1817594 hours shorter than
the repair times for CLEC customers.

Spring 2024 (Appalachian State University) STT 3850 : Week 10 70 / 122



Other Statistics

When bootstrapping, we are not limited to simple statistics like the
simple mean.

Once we have drawn a bootstrap sample, we can calculate any statistic
for that sample.
means, medians, trimmed means, correlation coefficients, and so on.
For example, instead of the sample mean, we can use more robust
statistics that are less sensitive to extreme observations.
It allows statistical inferences such as confidence intervals to be
calculated even for statistics for which there are no easy formulas.

Bootstrapping offers hope of reforming statistical practice:
away from simple but non-robust estimators like a sample mean or
least-squares regression, in favor of robust alternatives.
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Verizon example

Figure below shows the bootstrap distribution for the difference in
trimmed means, in this case 25% trimmed means, also known as the
mid-mean, the mean of the middle 50% of observations.

Compared to the bootstrap difference in ordinary means, this
distribution has a much smaller spread.

B <- 10ˆ4
diffmeans.25 <- numeric(B)
set.seed(3)
for (i in 1:B){

ILEC.sample <- sample(times.ILEC, size = length(times.ILEC), replace = TRUE)
CLEC.sample <- sample(times.CLEC, size = length(times.CLEC), replace = TRUE)
diffmeans.25[i] <- mean(ILEC.sample, trim = .25) - mean(CLEC.sample, trim = .25)

}
CIdiff.25 <- quantile(diffmeans.25, prob = c(0.025, 0.975))
CIdiff.25

2.5% 97.5%
-15.444192 -4.930067
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Verizon example

par(mfrow=c(1, 2))
hist(diffmeans.25, breaks = "Scott", col = "lightblue",

main = "Bootstrap Distribution \n Figure 14a \n 0.25 Trimmed Means",
freq= FALSE, xlab = substitute(paste(bar(x)[1],"*", - bar(x)[2],"*")))

abline(v = c(CIdiff.25, 0), col = c("blue", "blue", "red"),
lty = c("dashed", "dashed", "solid"))

qqnorm(diffmeans.25, main = "Normal Q-Q Plot \n Figure 14b")
qqline(diffmeans.25, col = "red")

Bootstrap Distribution 
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[1] 2.718305

Spring 2024 (Appalachian State University) STT 3850 : Week 10 73 / 122



Mythbusters example

Fifty adult participants who thought they were being considered for
an appearance on the show were interviewed by a show recruiter. In
the interview, the recruiter either yawned or did not. Participants
then sat by themselves in a large van and were asked to wait. While
in the van, the Mythbusters team watched the participants using a
hidden camera to see if they yawned.

The data frame containing the results of their experiment is available
in the mythbusters_yawn data frame included in the moderndive
package:

the “control” group participants who were not exposed to yawning.
the “seed” group participants who were exposed to yawning.
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Mythbusters example

library(moderndive)
library(tidyverse)
library(infer)
mythbusters_yawn %>%

group_by(group, yawn) %>%
summarize(count = n())

# A tibble: 4 x 3
# Groups: group [2]

group yawn count
<chr> <chr> <int>

1 control no 12
2 control yes 4
3 seed no 24
4 seed yes 10
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Mythbusters example

Here, we are interested in pseed − pcontrol. Let’s use infer pipeline to
obtain the bootstrap distribution.
set.seed(10)
bootstrap_distribution_yawning <- mythbusters_yawn %>%

specify(formula = yawn ~ group, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "diff in props", order = c("seed", "control"))

visualize(bootstrap_distribution_yawning) +
geom_vline(xintercept = 0)
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Mythbusters example
Compute a 95% confidence interval for pseed − pcontrol using the percentile
method.
percentile_ci<-bootstrap_distribution_yawning %>%

get_confidence_interval(type = "percentile", level = 0.95)
percentile_ci

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 -0.235 0.276
obs_diff_in_props <- mythbusters_yawn %>%

specify(formula = yawn ~ group, success = "yes") %>%
calculate(stat = "diff in props", order = c("seed", "control"))

obs_diff_in_props

Response: yawn (factor)
Explanatory: group (factor)
# A tibble: 1 x 1

stat
<dbl>

1 0.0441
myth_ci_se <- bootstrap_distribution_yawning %>%

get_confidence_interval(type = "se", point_estimate = obs_diff_in_props,level = 0.95)
myth_ci_se

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 -0.217 0.305
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Mythbusters example

Compute a 95% confidence interval for pseed − pcontrol using the standard
error method.
myth_ci_se <- bootstrap_distribution_yawning %>%

get_confidence_interval(type = "se",
point_estimate = obs_diff_in_props,
level = 0.95)

myth_ci_se

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 -0.217 0.305
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Mythbusters example
visualize(bootstrap_distribution_yawning) +
shade_confidence_interval(endpoints = percentile_ci)
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We’re 95% “confident” that the true difference in proportions
pseed − pcontrol is between (-0.235, 0.276).

Since the interval includes 0, we cannot conclusively say if either
proportion is larger.
This would suggest that there is no associated effect of being exposed to
a yawning recruiter on whether you yawn yourself.
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Section 7

Theory-based confidence intervals
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Theory-based confidence intervals

So far, we’ve constructed confidence intervals using two methods:
the percentile method and the standard error method.

We can only use the standard-error method if the bootstrap
distribution is bell-shaped (i.e., normally distributed).

If the sampling distribution is normally shaped, there is another
method for constructing confidence intervals that does not involve
using your computer.

You can use a theory-based method involving mathematical formulas!
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Confidence intervals for a Mean, σ known

The Centers for Disease Control maintains growth charts for infants
and children (http://cdc.gov/growthcharts/zscore.html). For 13-year-
old girls, the mean weight is 101 pounds with a standard deviation of
24.6 pounds. We assume the weights are normally distributed. The
public health officials in Sodor are interested in the weights of the
teens in their town: they suspect that the mean weight of their girls
might be different from the mean weight in the growth chart but
are willing to assume that the variation is the same. If they survey
a random sample of 150 thirteen-year-old girls and find their mean
weight – an estimate of the population mean weight – is 95 pounds,
how accurate will this estimate be?
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Confidence intervals for a Mean, σ known

We assume the 150 sample values are from a normal distribution,
N(µ, 24.6).

Then the sampling distribution of mean weights is

N

(
µ,

24.6√
150

)

Let X̄ denote the mean of the 150 weights, so standardizing gives

Z = X̄ − µ
24.6√

150
∼ N(0, 1)
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Confidence intervals for a Mean, σ known

For a standard normal random variable Z, we have:

1 − α = P (zα/2 < Z < z1−α/2)

Then:

0.95 = P

z0.025 <
X̄ − µ

24.6√
150

< z0.975


0.95 = P

(
X̄ + z0.025 × 24.6√

150
< µ < X̄ + z0.975 × 24.6√

150

)
0.95 = P

(
X̄ − 1.96 × 24.6√

150
< µ < X̄ + 1.96 × 24.6√

150

)
0.95 = P (X̄ − 3.937 < µ < X̄ + 3.937)

This means that, the random interval X̄ − 3.937 < µ < X̄ + 3.937 has a
probability of 0.95 of containing the mean µ.
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Confidence intervals for a Mean, σ known

Now, the random variable X̄ is replaced by the (observed) sample
mean weight of x̄ = 95, we obtain:

(X̄ − 3.937 < µ < X̄ + 3.937) = (95 − 3.937 < µ < 95 + 3.937)
= (91.1, 98.9)

Which is no longer a random interval.

We interpret this interval by stating that we are 95% confident that the
population mean weight of 13-year-old girls in Sodor is between 91.9
and 98.9 pounds.
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Confidence intervals for a Mean, σ known

More generally, for a sample of size n drawn from a normal distribution with
unknown µ, and known σ, a (1 − α) × 100% confidence interval for the
mean of µ is:

CI1−α(µ) =
(

X̄ − z1−α/2
σ√
n

, X̄ + z1−α/2
σ√
n

)
If we draw thousands of random samples from a normal distribution with
parameters µ, σ and compute the 95% confidence interval for each sample,
then about 95% of the intervals would contain µ.
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Confidence intervals for a Mean, σ known
set.seed(13)
counter <- 0 # set counter to 0
mu <- 25
sigma <- 4
n <- 30
sims <- 10ˆ4
plot(x = c(mu - 4*sigma/sqrt(n), mu + 4*sigma/sqrt(n)),

y = c(1, 100), type = "n", xlab = "", ylab = "")
for (i in 1:sims){
x <- rnorm(n, mu, sigma)
L <- mean(x) - qnorm(0.975)*sigma/sqrt(n)
U <- mean(x) - qnorm(0.025)*sigma/sqrt(n)
if(L < mu && mu < U){counter <- counter + 1}
if(i <= 100){
segments(L, i, U, i, col = "blue")
}

}
abline(v = mu, col = "red")Spring 2024 (Appalachian State University) STT 3850 : Week 10 87 / 122



Confidence intervals for a Mean, σ known
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ACL <- counter/sims*100
ACL

[1] 95.08
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Confidence intervals for a Mean, σ known

library(PASWR2)
set.seed(11)
cisim(samples = 100, n = 30, parameter = 25, sigma = 4,

type = "Mean")
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Note: 5% of the random confidence intervals do not contain µ = 25

100 random 95% confidence intervals where µ = 25

5% of the random confidence intervals do not contain Mu = 25.
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Example 2

An engineer test the gas mileage of a random sample of n = 30 of his
company cars ready to be sold. The 95% confidence interval for the
mean mileage of all the cars is (29.5, 33.4) miles per gallon. Evaluate
the following statements:

We are 95% confident that the gas mileage for cars in this
company is between 29.5 and 33.4 mpg.
95% of all samples will give an average mileage between 29.5
and 33.4 mpg.
There is a 95% chance that the true mean is between 29.5 and
33.4 mpg.
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Example 2

Solution:
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Example 3

Suppose the sample 3.4, 2.9, 2.8, 5.1, 6.3, 3.9 is drawn from the
normal distribution with unknown µ and known σ = 2.5. Find a 90%
confidence interval for µ.

Solution:
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Example 3
xs <- c(3.4, 2.9, 2.8, 5.1, 6.3, 3.9)
n <- length(xs)
SIGMA <- 2.5
alpha <- 0.10
LL <- mean(xs) - qnorm(1 - alpha/2)*SIGMA/sqrt(n)
UL <- mean(xs) + qnorm(1 - alpha/2)*SIGMA/sqrt(n)
CI <- c(LL, UL)
CI

[1] 2.387895 5.745438

# or use z.test() from PASWR2
z.test(x = xs, sigma.x = SIGMA, conf.level = 0.90)$conf

[1] 2.387895 5.745438
attr(,"conf.level")
[1] 0.9

The term z1−α/2 × σ/
√

n is called the margin of error (we abbreviate
this as ME).

The margin of error for a symmetric confidence interval is the distance
from the estimate to either end.
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Example 4

Suppose researchers want to estimate the mean weight of girls in
Sodor. They assume that the distribution of weights is normal with
unknown mean µ, but with known σ = 24.6. How many girls should
they sample if they want, with 95% confidence, their margin of error
to be at most 5 pounds?
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Example 4

n <- ceiling((qnorm(.975)*24.6/5)ˆ2)
n

[1] 93

# Using nsize from PASWR2
nsize(b = 5, sigma = 24.6, conf.level = 0.95, type = "mu")

The required sample size (n) to estimate the population
mean with a 0.95 confidence interval so that the margin
of error is no more than 5 is 93.

Note: To make the confidence interval narrower, analysts can either
increase the sample size n or
decrease the size of the quantile z1−α/2, which amounts to decreasing
the confidence level.
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Confidence intervals for a Mean, σ unknown

In most real-life settings, a data analyst will not know the mean or the
standard deviation of the population of interest.

How then would we get an interval estimate of the mean µ?
we have used the sample mean X̄ as an estimate of µ.
so it seems natural to consider the sample standard deviation S as an
estimate of σ.

However, in deriving the confidence interval for µ, we used the fact
that (X̄−µ)

σ/
√

n
follows a standard normal distribution.

Does changing σ to S, the sample standard deviation, change the
distribution?

We will use simulation to investigate the distribution of (X̄−µ)
σ/

√
n

for
random samples drawn from a N(µ, σ).
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Confidence intervals for a Mean, σ unknown
set.seed(1)
N <- 10ˆ4
TS <- numeric(N)
n <- 16
for(i in 1:N){

x <- rnorm(n, 25, 7)
xbar <- mean(x)
s <- sd(x)
TS[i] <- (xbar - 25)/(s/sqrt(n))

}
par(mfrow=c(1, 2))
hist(TS, breaks = "Scott", freq = FALSE, col = "pink", main = "", xlab = expression(t))
qqnorm(TS, col = rgb(1, 0, 0, .1))
abline(a = 0, b = 1)

t

De
ns

ity

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

−4 −2 0 2 4

−4
−2

0
2

4

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

Spring 2024 (Appalachian State University) STT 3850 : Week 10 97 / 122



Confidence intervals for a Mean, σ unknown

Consider qq plot for t15
# Consider qq plot for t_15
ggplot(data = data.frame(x = TS), aes(sample = x)) +

geom_qq(distribution = stats::qt, dparams = list(df = 15), size = 0.1, color = "blue") +
geom_abline(intercept = 0, slope = 1, color = "pink") +
theme_bw()
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This distribution does have slightly longer tails than the normal
distribution; you could never tell this from a histogram, but it is
apparent in the normal quantile plot.
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Confidence intervals for a Mean, σ unknown

In effect, having to estimate σ using S adds variability.

It turns out that
T = (X̄ − µ)

S/
√

n

has a Students t distribution with n − 1 degrees of freedom.

The density of a t distribution with k degrees of freedom is bell shaped
and symmetric about 0, with heavier (longer) tails than that of the
standard normal.

As k tends toward infinity, the density of the t distribution tends toward
the density of the standard normal.
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Confidence intervals for a Mean, σ unknown

curve(dnorm(x, 0, 1), -4, 4, col = "black", ylab = "", xlab = "")
curve(dt(x, 1), add = TRUE, lty = 2, col = "green")
curve(dt(x, 4), add = TRUE, lty = 3, col = "pink")
curve(dt(x, 9), add = TRUE, lty = 4, col = "red")
curve(dt(x, 36), add = TRUE, lty = 5, col = "blue")
abline(h = 0, lwd=2)
legend("topright", legend = c("N(0, 1)", "t_1", "t_4", "t_9", "t_36"),

lty = c(1, 2, 3, 4, 5), col =c("black", "green", "pink", "red", "blue"),
lwd = 1.5)
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Confidence intervals for a Mean, σ unknown

with ggplot2
ggplot(data = data.frame(x = c(-5, 5)), aes(x = x)) +

theme_bw() +
labs(x = "", y = "") +
stat_function(fun = dt, args = list(df = 1), n = 200, color = "green", linetype = "dashed") +
stat_function(fun = dt, args = list(df = 4), n = 200, color = "pink", linetype = "dashed") +
stat_function(fun = dt, args = list(df = 9), n = 200, color = "red", linetype = "dashed") +
stat_function(fun = dt, args = list(df = 36), n = 200, color = "blue", linetype = "dashed") +
stat_function(fun = dnorm, n = 200, color = "black", linetype = "dashed") +
geom_hline(yintercept = 0)
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Confidence intervals for a Mean, σ unknown

We derive the confidence interval for µ when σ is unknown in the same way
as when σ is known.

Let t1−α/2;n−1 denote the (1 − α/2) quantile of the t distribution with
n − 1 degrees of freedom. Then:

1 − α/2 = P (Tn−1 < t1−α/2;n−1)

for 0 < α < 1. Then using the symmetry of the t distribution, we have:

1 − α = P
(
−t1−α/2;n−1 < X̄−µ

S/
√

n
< t1−α/2;n−1

)
= P

(
X̄ − t1−α/2;n−1 × S/

√
n < µ < X̄ + t1−α/2;n−1 × S/

√
n

)
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Confidence intervals for a Mean, σ unknown

If N(µ, σ), i = 1, . . . , n, with σ unknown then a (1 − α) × 100%
confidence interval for µ is given by:

CI1−α(µ) = P
(
X̄ − t1−α/2;n−1 × S/

√
n < µ < X̄ + t1−α/2;n−1 × S/

√
n

)
.
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Example 5

The distribution of weights of boys in Sodor is normal with unknown
mean µ. From a random sample of 28 boys, we find a sample mean of
110 pounds and a sample standard deviation of 7.5 pounds. Compute
a 90% confidence interval.

To compute a 90% confidence interval, find the 0.95 quantile of the t
distribution with 27 degrees of freedom. That is quantile t0.95;27 satisfying
P (T27 < t0.95;27)
qt(.95, 27)

[1] 1.703288
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Example 5

The interval is

(110 − 1.7033 × 7.5/
√

28, 110 + 1.7033 × 7.5/
√

28) = (107.6, 112.4).

# Using function from PASWR2
tsum.test(mean.x = 110, s.x = 7.5, n.x = 28,

conf.level = 0.90)$conf

[1] 107.5858 112.4142
attr(,"conf.level")
[1] 0.9
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Example 5: Birth weight of a baby

The birth weight of a baby is of interest to health officials since many
studies have shown possible links between this weight and conditions
in later life, such as obesity or diabetes. Researchers look for possible
relationships between the birth weight of a baby and age of the mother
or whether or not she smokes cigarettes or drink alcohol during her
pregnancy. The centers for disease control and prevention CDC, using
data provided by the U.S. Department of Health and Human Services,
National Center for Health Statistics, the Division of Vital Statistics
as well as the CDC, maintain a database on all babies born in a given
year. We will investigate different samples taken from the CDC’s
database of births. Find a 99% confidence interval for the mean
weight of baby girls born in North Carolina in 2004.

We will use the NCBirths2004 data from the resampledata package.
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Example 5: Birth weight of a baby

library(resampledata)
head(NCBirths2004, n = 2)

ID MothersAge Tobacco Alcohol Gender Weight Gestation Smoker
1 1 30-34 No No Male 3827 40 No
2 2 30-34 No No Male 3629 38 No

NCBirths2004 %>%group_by(Gender)%>%
summarize(Mean = mean(Weight),SD=sd(Weight), n = n()) -> BW

BW

# A tibble: 2 x 4
Gender Mean SD n
<fct> <dbl> <dbl> <int>

1 Female 3398. 486. 521
2 Male 3502. 485. 488
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Example 5: Birth weight of a baby

A normal quantile plot shows that the weights are approximately normally
distributed, so t interval is reasonable.
# Using lattice
qqmath(~Weight|Gender, data = NCBirths2004, col = rgb(1, 0, 0, 0.1))
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Example 5: Birth weight of a baby

ggplot(data = NCBirths2004, aes(sample = Weight)) +
stat_qq(color = rgb(1, 0, 0, 0.1)) +
stat_qq_line() +
facet_grid(cols = vars(Gender)) +
theme_bw()
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Example 5: Birth weight of a baby

Since 1 − α = 0.99, then α/2 = 0.005. The 0.995 quantile for the t
distribution with 520 df, t0.995;520 is
qt(0.995, 520)

[1] 2.585317

The interval is

(3398.3166987 − 2.585317 × 485.6911149/
√

521,

3398.3166987 + 2.585317 × 485.6911149/
√

521)
= (3343.3049953g, 3453.328402g).
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Example 5: Birth weight of a baby

# t.test() to find confidence intervals.
t.test(NCBirths2004$Weight[NCBirths2004$Gender=="Female"],

conf = 0.99)$conf

[1] 3343.305 3453.328
attr(,"conf.level")
[1] 0.99

# Or
JG <- NCBirths2004 %>%

filter(Gender == "Female")
t.test(JG$Weight, conf = 0.99)$conf

[1] 3343.305 3453.328
attr(,"conf.level")
[1] 0.99

Spring 2024 (Appalachian State University) STT 3850 : Week 10 111 / 122



Example 5: Birth weight of a baby

Compare to 99% bootstrap standard error confidence intervals
girls <- subset(NCBirths2004, select = Weight,

subset = Gender =="Female", drop = TRUE)
B <- 10ˆ4
bsmean <- numeric(B)
for(i in 1:B){

bss <- sample(girls, size = length(girls), replace = TRUE)
bsmean[i] <- mean(bss)}

(CIperc <- quantile(bsmean, probs = c(0.005, 0.995)))

0.5% 99.5%
3344.132 3452.721

(CIse <- c(mean(girls) +
c(-1, 1)*qt(.995, length(girls) - 1)*sd(bsmean)))

[1] 3343.402 3453.231
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Assumptions underlying t-confidence interval

Recall: If N(µ, σ), i = 1, . . . , n, with σ unknown then a (1 − α) × 100%
confidence interval for µ is given by:

CI1−α(µ) = P
(
X̄ − t1−α/2;n−1 × S/

√
n < µ < X̄ + t1−α/2;n−1 × S/

√
n

)
.

The t confidence interval assumes that the underlying population is normal,
so what happens if that is not the case?
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Assumptions underlying t-confidence interval

When the population has a normal distribution, the t interval is exact:
a (1 − α) × 100% interval covers µ with probability 1 − α.

Equivalently, misses µ on either side with probability α/2;
that is, the interval is completely above µ with probability α/2 or is
completely below with probability α/2.

Let us check this for a non-normal population by running a simulation.
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Assumptions underlying t-confidence interval

We draw random samples from the right-skewed gamma distribution
with α = 5 and λ = 2 and count the number of times the 95%
confidence interval misses the mean µ = 5/2 on each side.

set.seed(13)
x <- rgamma(n=1000, shape=5, rate=2)
#create histogram to view distribution of values
hist(x, main="")
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Assumptions underlying t-confidence interval

set.seed(13)
tooLow <- 0 # set counter to 0
tooHigh <- 0 # set counter to 0
n <- 20 # sample size
q <- qt(0.975, n - 1)
N <- 10ˆ5
for(i in 1:N){

x <- rgamma(n, shape = 5, rate = 2)
xbar <- mean(x)
s <- sd(x)
L <- xbar - q*s/sqrt(n)
U <- xbar + q*s/sqrt(n)
if(U < 5/2){tooLow <- tooLow + 1}
if(L > 5/2){tooHigh <- tooHigh + 1}

}
TL <- tooLow/N*100
TH <- tooHigh/N*100
c(TL, TH)

[1] 4.340 1.328

In one run of this simulation,
about 4.34% of the time, the interval was too low and below 5/2, and
about 1.328% of the time, the interval was too high and above 5/2.
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Assumptions underlying t-confidence interval

When the population is non-normal but symmetric and the sample size
is moderate or large, the t interval is very accurate.

The main weakness of the t confidence interval occurs when the
population is skewed.

The simulation illustrated this problem.

To see this from another point of view, we will look at the distributions
of the t statistics,

T = X̄ − µ

S/
√

n

since accuracy of t intervals depends on how close the t statistic is to
having a t distribution.
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Assumptions underlying t-confidence interval
set.seed(13); library(gridExtra)
n <- 10 # sample size
q <- qt(0.975, n - 1)
N <- 10ˆ5
TSU <- numeric(N)
for(i in 1:N){

x <- runif(n, 0, 1)
xbar <- mean(x)
s <- sd(x)
TSU[i] <- (xbar - 0.5)/(s/sqrt(n))

}
TSE10 <- numeric(N)
for(i in 1:N){

x <- rexp(n, 1)
xbar <- mean(x)
s <- sd(x)
TSE10[i] <- (xbar - 1)/(s/sqrt(n))

}
n <- 10
p1 <- qqmath(~TSU, col = "red", xlim = c(-3,3), ylim = c(-3,3), distribution = function(p){qt(p, df = n - 1)},

xlab = "Theoretical t quantiles", ylab = "Sample quantiles", main = "Uniform, n = 10",
panel = function(x,...){

panel.qqmath(x, pch = ".", ...)
panel.abline(a = 0, b =1, ...)})

p2 <- qqmath(~TSE10, col = "red", xlim = c(-3,3), ylim = c(-3,3), distribution = function(p){qt(p, df = n - 1)},
xlab = "Theoretical t quantiles", ylab = "Sample quantiles", main = "Exponential, n = 10",
panel = function(x,...){

panel.qqmath(x, pch = ".", ...)
panel.abline(a = 0, b = 1, ...)})

gridExtra::grid.arrange(p1, p2, ncol = 2)
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Assumptions underlying t-confidence interval

Uniform, n = 10

Theoretical t quantiles
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Notice that for the uniform population, the distribution of the t
statistic is close to the t distribution, except in the tails.

For exponential populations, the discrepancy is much larger, and the
discrepancy decreases only slowly as the sample size increases.
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Assumptions underlying t-confidence interval
set.seed(13); library(gridExtra)
n <- 10 # sample size
q <- qt(0.975, n - 1)
N <- 10ˆ5
n <- 100
TSE100 <- numeric(N)
for(i in 1:N){

x <- rexp(n, 1)
xbar <- mean(x)
s <- sd(x)
TSE100[i] <- (xbar - 1)/(s/sqrt(n))}

n <- 5000
TSE5000 <- numeric(N)
for(i in 1:N){

x <- rexp(n, 1)
xbar <- mean(x)
s <- sd(x)
TSE5000[i] <- (xbar - 1)/(s/sqrt(n))}

n <- 100
p1<-qqmath(~TSE100,col = "red", xlim = c(-3,3), ylim = c(-3,3), distribution = function(p){qt(p, df = n - 1)},

xlab = "Theoretical t quantiles", ylab = "Sample quantiles", main = "Exponential, n = 100",
panel = function(x,...){

panel.qqmath(x, pch = ".", ...)
panel.abline(a = 0, b = 1, ...)})

n <- 100
p2<-qqmath(~TSE5000,col = "red", xlim = c(-3,3), ylim = c(-3,3), distribution = function(p){qt(p, df = n - 1)},

xlab = "Theoretical t quantiles", ylab = "Sample quantiles", main = "Exponential, n = 5000",
panel = function(x,...){

panel.qqmath(x, pch = ".", ...)
panel.abline(a = 0, b = 1, ...)})

gridExtra::grid.arrange(p1, p2, ncol = 2)
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Assumptions underlying t-confidence interval

Exponential, n = 100

Theoretical t quantiles
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Exponential, n = 5000
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For an exponential population, we must have n > 5000
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Assumptions underlying t-confidence interval

Before using a t confidence interval, you should create a normal
quantile plot to see whether the data are skewed.

The larger the sample size, the more skew can be tolerated.

However, be particularly careful with outliers: since x̄ is sensitive to
extreme values;

If the outliers cannot be removed, then advanced, more robust
techniques may be required.
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