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Section 1

Outline for the week
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By the end of the week: Basic Regression

Data Modeling
Exploratory data analysis
Linear regression
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Section 2

Basic Regression
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Basic Regression

Now that we are equipped with
an understanding of how to import data
data visualization and
data wrangling skill

Let’s now proceed with data modeling.

The fundamental premise of data modeling is to make explicit the
relationship between:

an outcome variable y, also called a dependent variable or response
variable, and
an explanatory/predictor variable x, also called an independent
variable or covariate.
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Data Modeling

Data modeling serves one of two purposes:
1 Modeling for explanation:

Describe and quantify the relationship between the outcome variable y
and a set of explanatory variables x.
Determine the significance of any relationships.
Have measures summarizing these relationships.
Possibly identify any causal relationships between the variables.

2 Modeling for prediction:
Predict an outcome variable y based on the information contained in a
set of predictor variables x.
Here, you don’t care so much about understanding how all the variables
relate and interact with one another.
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Data Modeling

For example, say you are interested in
an outcome variable y of whether patients develop lung cancer and
information x on their risk factors, such as smoking habits, age, and
socioeconomic status.

If we are modeling for explanation,
we would be interested in both describing and quantifying the effects of
the different risk factors.
One reason could be that you want to design an intervention to reduce
lung cancer incidence in a population, such as targeting smokers of a
specific age group with advertising for smoking cessation programs.

If we are modeling for prediction,
we wouldn’t care so much about understanding how all the individual
risk factors contribute to lung cancer,
but rather only whether we can make good predictions of which people
will contract lung cancer.
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Linear regression

There are many techniques for modeling, such as
tree-based models and
neural networks,

But in this class, we’ll focus on one particular technique: linear
regression.

Linear regression involves a numerical outcome variable y and
explanatory variables x that are either numerical or categorical.

the relationship between y and x is assumed to be linear, or in other
words, a line.
However, we’ll see that what constitutes a “line” will vary depending on
the nature of your explanatory variables x.
Linear regression is one of the most commonly-used and
easy-to-understand approaches to modeling.
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Needed packages

Let’s now load all the packages needed
library(ggplot2) # for data visualization
library(dplyr) # for data wrangling
library(readr) # for importing spreadsheet data into R
library(moderndive) # datasets and regression functions
library(skimr) # provides simple-to-use functions

# for summary statistics
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One numerical explanatory variable

Researchers at the University of Texas in Austin, Texas (UT Austin)
tried to answer the following research question:

what factors explain differences in instructor teaching evaluation scores?

To this end, they collected instructor and course information on 463
courses.

A full description of the study can be found at https://openintro.org.

The data on the 463 courses at UT Austin can be found in the evals
data frame included in the moderndive package.
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One numerical explanatory variable

Let’s fully describe the 4 variables we will focus on:
1 ID: An identification variable used to distinguish between the 1

through 463 courses in the dataset.
2 score: A numerical variable of the course instructor’s average

teaching score, where the average is computed from the evaluation
scores from all students in that course. Teaching scores of 1 are lowest
and 5 are highest. This is the outcome variable y of interest.

3 bty_avg: A numerical variable of the course instructor’s average
“beauty” score, where the average is computed from a separate panel of
six students. “Beauty” scores of 1 are lowest and 10 are highest. This
is the explanatory variable x of interest.

4 age: A numerical variable of the course instructor’s age. This will be
another explanatory variable x that we’ll use later.
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One numerical explanatory variable

We’ll answer these questions by modeling the relationship between teaching
scores and “beauty” scores using simple linear regression where we have:

1 A numerical outcome variable y (the instructor’s teaching score) and
2 A single numerical explanatory variable x (the instructor’s “beauty”

score).
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Exploratory data analysis

A crucial step before doing any kind of analysis or modeling is
performing an exploratory data analysis, or EDA for short.

Get distributions of the individual variables in your data,
Find out any potential relationships exist between variables,
Find out any outliers and/or missing values, and
(most importantly) helps you to decide how to build your model.

Here are three common steps in EDA:
1 Examine the raw data values.
2 Compute summary statistics, such as means, medians, and interquartile

ranges.
3 Create data visualizations.
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Step 1: Examine the raw data values

evals_ch5 <- evals %>%
select(ID, score, bty_avg, age) # take subset

glimpse(evals_ch5)

Rows: 463
Columns: 4
$ ID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,~
$ score <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4.5, 4.~
$ bty_avg <dbl> 5.000, 5.000, 5.000, 5.000, 3.000, 3.000, 3.000, 3.333, 3.333,~
$ age <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, 40, 40~
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Step 1: Examine the raw data values

An alternative way to look at the raw data values is by choosing a random
sample of the rows.
evals_ch5 %>%

sample_n(size = 5)

# A tibble: 5 x 4
ID score bty_avg age

<int> <dbl> <dbl> <int>
1 288 3.5 6.67 34
2 272 4.4 5.67 57
3 459 4.5 6.83 32
4 238 4.9 7 33
5 45 4.4 4.67 33
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Step 2: summary statistics

evals_ch5 %>%
summarize(mean_bty_avg = mean(bty_avg),

mean_score = mean(score),
median_bty_avg = median(bty_avg),
median_score = median(score))

# A tibble: 1 x 4
mean_bty_avg mean_score median_bty_avg median_score

<dbl> <dbl> <dbl> <dbl>
1 4.42 4.17 4.33 4.3
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Step 2: summary statistics

The skim() function from the skimr package, “skims” the data, and
returns commonly used summary statistics
library(skimr)
evals_ch5 %>%

select(score, bty_avg) %>%
skim()
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Correlation coefficient r

When the two variables are numerical, we can compute the correlation
coefficient.

The correlation coefficient, denoted by r , measures the direction and
strength of the linear relationship between two numerical variables. Is
is given by the equation

r = 1
(n − 1)

n∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
=
∑

zxzy

n − 1

where x̄ and ȳ represents the mean of the x and y variables. Also, sx and
sy denotes the standard deviation of the x and y variables respectively. zx

and zy are the z-scores for the x and y variables respectively.

Spring 2024 (Appalachian State University) STT 3850 : Week 4 18 / 88



Properties of r

sign of r gives direction of association

−1 ≤ r ≤ 1
-1 indicates a perfect negative relationship: As one variable increases, the
value of the other variable tends to go down, following a straight line.
0 indicates no relationship: The values of both variables go up/down
independently of each other.
+1 indicates a perfect positive relationship: As the value of one variable
goes up, the value of the other variable tends to go up as well in a linear
fashion.

rx,y = ry,x

Correlation has no units.

Correlation is not affected by multiplying or shifting data

Correlation measures LINEAR association only

Outliers affect correlation greatly
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Correlation coefficient and scatterplot
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Correlation coefficien: GPA Example

Following are the high school GPAs and the college GPAs at the end of the
freshman year for ten different students from the Gpa data set of the BSDA
package.
library(BSDA)
head(Gpa)

# A tibble: 6 x 2
hsgpa collgpa
<dbl> <dbl>

1 2.7 2.2
2 3.1 2.8
3 2.1 2.4
4 3.2 3.8
5 2.4 1.9
6 3.4 3.5

Spring 2024 (Appalachian State University) STT 3850 : Week 4 21 / 88



Correlation coefficient: GPA Example
ggplot(data = Gpa, aes(x = hsgpa, y = collgpa)) +

labs(x = "High School GPA", y = "College GPA") +
geom_point(size = 5, color = "blue") +
theme_bw()
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The scatterplot shows that the college GPA increases as the high school
GPA increases
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Correlation coefficien: GPA Example
values <- Gpa %>%

mutate(y_ybar = collgpa - mean(collgpa),
x_xbar = hsgpa - mean(hsgpa),
zx = x_xbar/sd(hsgpa), zy = y_ybar/sd(collgpa))

values

# A tibble: 10 x 6
hsgpa collgpa y_ybar x_xbar zx zy
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2.7 2.2 -0.5 -0.0100 -0.0210 -0.657
2 3.1 2.8 0.100 0.39 0.817 0.131
3 2.1 2.4 -0.300 -0.61 -1.28 -0.394
4 3.2 3.8 1.1 0.49 1.03 1.44
5 2.4 1.9 -0.8 -0.31 -0.650 -1.05
6 3.4 3.5 0.8 0.69 1.45 1.05
7 2.6 3.1 0.4 -0.110 -0.231 0.525
8 2 1.4 -1.3 -0.71 -1.49 -1.71
9 3.1 3.4 0.7 0.39 0.817 0.919

10 2.5 2.5 -0.200 -0.21 -0.440 -0.263

r = 1
(n − 1)

n∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
=
∑

zxzy

n − 1
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Correlation coefficient: GPA Example

values %>%
summarize(r = (1/9)*sum(zx*zy))

# A tibble: 1 x 1
r

<dbl>
1 0.844

Using the build in cor() function:
Gpa %>%

summarize(r = cor(collgpa, hsgpa))

# A tibble: 1 x 1
r

<dbl>
1 0.844
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Correlation coefficient: GPA Example

Using get_correlation() function in the moderndive package.
Gpa %>%

get_correlation(formula = collgpa ~ hsgpa)

# A tibble: 1 x 1
cor

<dbl>
1 0.844
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Correlation coefficient: GPA Example
p1 <- ggplot(data = Gpa, aes(x = hsgpa, y = collgpa)) +

geom_point(size = 5, color = "red") +
theme_bw()

p2 <- ggplot(data = values, aes(x = zx, y = zy)) +
geom_point(size = 5, color = "blue") +
theme_bw()

library(patchwork)
p1/p2
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Correlation coefficient: Teaching Evaluations Example

evals_ch5 %>%
get_correlation(formula = score ~ bty_avg)

# A tibble: 1 x 1
cor

<dbl>
1 0.187
evals_ch5 %>%

summarize(correlation = cor(score, bty_avg))

# A tibble: 1 x 1
correlation

<dbl>
1 0.187
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Step 3: create data visualizations

ggplot(evals_ch5, aes(x = bty_avg, y = score)) +
geom_jitter(size = 3, color = "blue") +
labs(x = "Beauty Score", y = "Teaching Score",

title = "Scatterplot teaching and beauty scores") +
theme_bw()
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Step 3: creating data visualizations

Add “best-fitting” line (regression line).
ggplot(evals_ch5, aes(x = bty_avg, y = score)) +

geom_point(size = 3, color = "purple") +
labs(x = "Beauty Score", y = "Teaching Score",

title = "Teaching and Beauty Scores") +
geom_smooth(method = "lm", se = FALSE) +
theme_bw()
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Section 3

Simple linear regression
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Simple linear regression

You may recall from secondary/high school algebra that the equation of a
line is:

y = m · x + b

The intercept coefficient is b is the value of y when x = 0.

The slope coefficient m for x is the increase in y for every increase in x.

However, when defining regression equation line, we use slightly different
notation.
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Simple linear regression

The regression equation is given by:

y = β0 + β1x + ϵ

where β0 is the intercept,

β1 is the slope,

and ϵ is random error.

For the ith trial, we have:

yi = β0 + β1xi + ϵi
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Simple linear regression

The line that best fits the data is given by,

ŷ = b0 + b1x

where b0 and b1 are estimates for the population parameters β0 and β1.

From the best fit line, we can compute the:
predicted ŷ for each x and
measure the error of prediction.

The error of prediction, ei (also called residual) is the difference in the
actual yi and the predicted ŷi.

ei = yi − ŷi.
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The least squares regression line

The least squares regression line is:

ŷ = b0 + b1x

where
b1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2 = r
sy

sx

and
b0 = ȳ − b1x̄.
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Regression: Teaching Evaluations Example

3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Teaching and Beauty Scores

We know that the regression line has a positive slope b1 corresponding
to our explanatory x variable bty_avg.

However, what is the numerical value of the slope b1? What about the
intercept b0?
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Regression: Teaching Evaluations Example

We obtain the regression line parameters in two steps:
1 We “fit” the linear regression model using the lm() function and save

it, lets call it score_model.
2 We get the regression table by applying the

get_regression_table() function from the moderndive package
to score_model or using summary() on the linear model object.
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Regression: Teaching Evaluations Example

# Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)
# Get regression table:
get_regression_table(score_model)

# A tibble: 2 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 intercept 3.88 0.076 51.0 0 3.73 4.03
2 bty_avg 0.067 0.016 4.09 0 0.035 0.099
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Regression: Teaching Evaluations Example
# Using summary()
summary(score_model)

Call:
lm(formula = score ~ bty_avg, data = evals_ch5)

Residuals:
Min 1Q Median 3Q Max

-1.9246 -0.3690 0.1420 0.3977 0.9309

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5348 on 461 degrees of freedom
Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05Spring 2024 (Appalachian State University) STT 3850 : Week 4 38 / 88



Regression: Teaching Evaluations Example

# Use formula
evals_ch5 %>%

summarize(b1 = cor(bty_avg, score)*sd(score)/sd(bty_avg),
b0 = mean(score) - b1*mean(bty_avg))

# A tibble: 1 x 2
b1 b0

<dbl> <dbl>
1 0.0666 3.88

Spring 2024 (Appalachian State University) STT 3850 : Week 4 39 / 88



Regression: Teaching Evaluations Example

Lets interpret the regression table. The equation of the regression line:

ŷ = b0 + b1 · x

ŝcore = b0 + b1 · bty_avg
= 3.88 + 0.067 · bty_avg

The intercept b0 = 3.88
is the average teaching score ŷ = ŝcore for those courses where the
instructor had a “beauty” score (bty_avg) of 0.
Note however that bty_avg of 0 is impossible since the beauty scores
ranges from 1 to 10.
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Regression: Teaching Evaluations Example

The slope b1 of bty_avg is 0.067.
The sign is positive, suggesting a positive relationship between these two
variables, meaning teachers with higher “beauty” scores also tend to
have higher teaching scores.
For every increase of 1 unit in bty_avg, there is an associated increase
of, on average, 0.067 units of score.
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Observed/fitted values and residuals

Now we are interested in information on individual observations. For
example, let’s focus on the 21st of the 463 courses in the evals_ch5
dataframe
# Fit regression model:
evals_ch5[21,]

# A tibble: 1 x 4
ID score bty_avg age

<int> <dbl> <dbl> <int>
1 21 4.9 7.33 31
evals_ch5[21,]$bty_avg

[1] 7.333

We want to know what is the value ŷ on the regression line
corresponding to instructor’s bty_avg “beauty” score of 7.333.
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Observed/fitted values and residuals

Square: The fitted value ŷi is given by

ŷi = b0 + b1 · x = 3.88 + 0.067 · 7.333 = 4.369

Circle: The observed value yi = 4.9.
Arrow: The length of the arrow is the residual or error and is given by

ei = yi − ŷi = 4.9 − 4.369 = 0.531.

Spring 2024 (Appalachian State University) STT 3850 : Week 4 43 / 88



Observed/fitted values and residuals
To compute both the fitted value and residual for all observations in the
data we use the get_regression_points() function.
regression_points <- get_regression_points(score_model)
regression_points

# A tibble: 463 x 5
ID score bty_avg score_hat residual

<int> <dbl> <dbl> <dbl> <dbl>
1 1 4.7 5 4.21 0.486
2 2 4.1 5 4.21 -0.114
3 3 3.9 5 4.21 -0.314
4 4 4.8 5 4.21 0.586
5 5 4.6 3 4.08 0.52
6 6 4.3 3 4.08 0.22
7 7 2.8 3 4.08 -1.28
8 8 4.1 3.33 4.10 -0.002
9 9 3.4 3.33 4.10 -0.702

10 10 4.5 3.17 4.09 0.409
# i 453 more rows
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Assessing the fit

The regression model is a good model if the scatterplot of residuals
versus x-values or if the scatterplot of residuals versus ŷ-values has no
interesting features.

No direction
No shape
No bends
No outliers
No identifiable pattern
Equal or constant variance (homoscedasticity)

In addition, for a good model, the residuals are approximately normally
distributed. Check the histogram of residuals.
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Assessing the fit
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Assessing the fit: Teaching Evaluations Example

library(ggfortify)
autoplot(score_model, ncol = 2, nrow = 1, which = 1:2) +

theme_bw()
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Section 4

Confidence Intervals and Tests
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Estimating σ2

The regression equations give the mean of the group. What is the standard
deviation of this group? That is, we have to estimate σ.

yi = β0 + β1xi + ϵi, V ar(ϵi) = σ2.

A natural estimator for σ2 is:

1
n

n∑
i=1

(ϵi − E(ϵ))2 = 1
n

n∑
i=1

(ϵi)2 = 1
n

n∑
i=1

(yi − β0 − β1xi)2.

Since, β0 and β1 are unknown, we use the estimators:

1
n

n∑
i=1

e2
i = 1

n

n∑
i=1

(yi − b0 − b1xi)2 = SSE

n
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Estimating σ2

Since b0, b1 are estimators, the ê2
i are not independent. We use the

following estimator of σ2:

s2 = SSE

n − 2 = MSE,

where n − 2 is the degree of freedom (df) (why?), and MSE stands for error
mean square or residual mean square. Generally,
df = number of cases - number of parameters.

The residual standard error, s =
√

MSE, gives the average error the
model predicts.
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Properties of OLS

If we assume that ϵi ∼ N(0, σ2), then the OLS estimates are also maximum
likelihood estimates (MLE). Under the normal assumption,

b1 ∼ N

(
β1,

σ2∑
(xi − x̄)2

)
,

b0 ∼ N

(
β0, σ2

(
1
n

+ x̄2∑
(xi − x̄)2

))
,

These quantities will be used to construct confidence intervals, to perform
hypothesis testing, and to make other statistical inferences.
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Confidence Intervals

Linear model assumptions:

yi = β0 + β1xi + ϵi, ϵi ∼ N(0, σ2)

Under this model:

b0 − β0
S(b0) ∼ tn−2,

b1 − β1
S(b1) ∼ tn−2

Hence, 100(1 − α)% confidence interval for β0 is

b0 ± t1−α/2;n−2S(b0);

100(1 − α)% confidence interval for β1 is

b1 ± t1−α/2;n−2S(b1);
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Hypothesis Tests

A hypothesis test of: H0 : β0 = 0 vs Ha : β0 ̸= 0,

is obtained by computing

t = b0 − 0
S(b0) = b0

S(b0) ∼ tn−2, under H0

Then, reject H0 if |t| > t1−α/2,n−2. ℘-values can be computed as:

℘-value = 2 Pr(T > t)

reject H0 if ℘-value < α.
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Hypothesis Tests

Similarly, a hypothesis test of H0 : β1 = 0 vs Ha : β1 ̸= 0,

is obtained by computing

t = b1 − 0
S(b1) = b1

S(b1) ∼ tn−2, under H0

Then, reject H0 if |t| > t1−α/2,n−2. ℘-values can be computed as:

℘-value = 2 Pr(T > t)

reject H0 if ℘-value < α.
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Regression: Teaching Evaluations Example

# Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)
# Get regression table:
get_regression_table(score_model, conf.level = 0.95)

# A tibble: 2 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 intercept 3.88 0.076 51.0 0 3.73 4.03
2 bty_avg 0.067 0.016 4.09 0 0.035 0.099
# conf.level = 0.95 is default
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Regression: Teaching Evaluations Example
summary(score_model)

Call:
lm(formula = score ~ bty_avg, data = evals_ch5)

Residuals:
Min 1Q Median 3Q Max

-1.9246 -0.3690 0.1420 0.3977 0.9309

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5348 on 461 degrees of freedom
Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
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Regression: Teaching Evaluations Example

To obtain the residuals for score_model use the function resid on a
linear model object.
eis <- resid(score_model)
RSS <- sum(eisˆ2)
RSS

[1] 131.8684
RSE <- sqrt(RSS/(dim(evals_ch5)[1]-2))
RSE

[1] 0.5348351
# Or
summary(score_model)$sigma

[1] 0.5348351
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Regression: Teaching Evaluations Example

b0 <- coef(score_model)[1]
b1 <- coef(score_model)[2]
c(b0, b1)

(Intercept) bty_avg
3.88033795 0.06663704

XTXI <- summary(score_model)$cov.unscaled
MSE <- summary(score_model)$sigmaˆ2
(var_cov_b <- MSE*XTXI)

(Intercept) bty_avg
(Intercept) 0.005797752 -0.0011725030
bty_avg -0.001172503 0.0002654016
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Regression: Teaching Evaluations Example

seb0 <- sqrt(var_cov_b[1, 1])
seb1 <- sqrt(var_cov_b[2, 2])
c(seb0, seb1)

[1] 0.07614297 0.01629115
# confidence interval
(df <- dim(evals_ch5)[1] - 2)

[1] 461
##b0
t_critical <- qt(0.975, df)
c(b0 - t_critical*seb0, b0 + t_critical*seb0)

(Intercept) (Intercept)
3.730708 4.029968
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Regression: Teaching Evaluations Example

##b1
c(b1 - t_critical*seb1, b1 + t_critical*seb1)

bty_avg bty_avg
0.03462292 0.09865116
# Or
confint(score_model, level = 0.95)

2.5 % 97.5 %
(Intercept) 3.73070764 4.02996827
bty_avg 0.03462292 0.09865116
# Testing
tb0 <- b0/seb0
tb1 <- b1/seb1
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Regression: Teaching Evaluations Example

c(tb0, tb1)

(Intercept) bty_avg
50.961212 4.090382

pvalues <- c(pt(tb0, df, lower = FALSE)*2,
pt(tb1, df, lower = FALSE)*2)

pvalues

(Intercept) bty_avg
1.561043e-191 5.082731e-05
summary(score_model)$coef[ ,4]

(Intercept) bty_avg
1.561043e-191 5.082731e-05
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Partition of Total sum of squares

For the linear regression model: yi = β0 + β1xi + ϵi,

We have fitted the line: ŷi = β0 + β1xi.

Partition of Total sum of squares:
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Partition of Total sum of squares

Total sum of squares (SST ): SST =
∑

(yi − ȳ)2.

Error sum of squares (SSE): SSE =
∑

(yi − ŷi)2.

Regression sum of squares (SSR): SSR =
∑

(ŷi − ȳ)2

Then we have the following relation:∑
(yi − ȳ)2 =

∑
(ŷi − ȳ)2 +

∑
(yi − ŷi)2

That is: SST = SSR + SSE
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Coefficient of Determination

A natural measure of the effect of x in reducing in variation in y is to
express the reduction in variation as a proportion of the total variation:

R2 = SSR

SST
= 1 − SSE

SST
.

We can also write:

R2 = var(ŷ)
var(y)

Note that:
0 ≤ R2 ≤ 1
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Coefficient of Determination

Some common misunderstandings of R2:

A high coefficient of determination indicates that useful predictions can
be made (not always).

A high coefficient of determination indicates the estimated regression
line is a good fit (not always).

A coefficient of determination near zero indicates that x and y are not
related (not always).
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Coefficient of Determination
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Regression: Teaching Evaluations Example

TSS <- sum((evals_ch5$score - mean(evals_ch5$score))ˆ2)
c(RSS, TSS)

[1] 131.8684 136.6543
R2 <- (TSS - RSS)/TSS
R2

[1] 0.03502226
# Or
summary(score_model)$r.squared

[1] 0.03502226
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Regression: Teaching Evaluations Example

get_regression_points(score_model)

# A tibble: 463 x 5
ID score bty_avg score_hat residual

<int> <dbl> <dbl> <dbl> <dbl>
1 1 4.7 5 4.21 0.486
2 2 4.1 5 4.21 -0.114
3 3 3.9 5 4.21 -0.314
4 4 4.8 5 4.21 0.586
5 5 4.6 3 4.08 0.52
6 6 4.3 3 4.08 0.22
7 7 2.8 3 4.08 -1.28
8 8 4.1 3.33 4.10 -0.002
9 9 3.4 3.33 4.10 -0.702

10 10 4.5 3.17 4.09 0.409
# i 453 more rows
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Regression: Teaching Evaluations Example

get_regression_points(score_model) %>%
summarize(var_y = var(score),

var_y_hat = var(score_hat),
var_residual = var(residual)) %>%

mutate(R2 = var_y_hat/var_y)

# A tibble: 1 x 4
var_y var_y_hat var_residual R2
<dbl> <dbl> <dbl> <dbl>

1 0.296 0.0104 0.285 0.0350
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Section 5

Prediction intervals
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Interval Estimation for Mean Response and a Single
Response

1 Estimating the mean of y at a given value of x, that is, E(y|x) = µy|x

Example: A power company may want to estimate the mean daily power
consumption for a given temperature. They need this estimate for a report.

2 Predicting a single value of y for a given value of x.

Example: The power company want to predict power consumption on a
single day for a given temperature.

They might know a hot day is coming up the next day and have good
idea of what the high temperature will be, so what to predict the
power consumption.

We want to be 99.99% confident that they have enough access to
power to cover demand.
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Interval Estimation of Mean Response

Let xh denote the level of x for which we wish to estimate the mean
response. Then, by the regression equation we have:

E(yh|xh) = ŷh = b0 + b1xh

Variance:

V ar(ŷh) = σ2
[

1
n

+ (xh − x̄)2

Σ(xi − x̄)2

]

Estimated Variance:

S2(ŷh) = MSE

[
1
n

+ (xh − x̄)2

Σ(xi − x̄)2

]
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Interval Estimation of Mean Response

t−distribution

yh − ŷh

S(ŷh) ∼ tn−2

So, the 100(1 − α)% confidence interval for the mean response is:

ŷh ± t1−α/2;n−2S(ŷh).
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Prediction Intervals for a Single Response
In prediction of a single response, we can use the estimated mean function
to predict it. Let x∗ denote the level of x, then we have:

y∗ = β0 + β1x∗ + ϵ∗, V ar(ϵ∗) = σ2.

A natural estimation is:
ŷ∗ = b0 + b1x∗.

The variance of prediction error:

V ar(pred) = σ2 + σ2
(

1
n

+ (x∗ − x̄)2∑
(x∗ − x̄)2

)

The estimated standard error of prediction at x∗:

S(pred) =
√

MSE

(
1 + 1

n
+ (x∗ − x̄)2∑

(x∗ − x̄)2

)
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Prediction Intervals for a Single Response

Hence,

y∗ − ŷ∗
S(pred) ∼ tn−2.

So, the prediction interval for y∗ is:

ŷ∗ ± t1−α/2;n−2S(pred).
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Confidence Regions and Prediction Bands

PIM <- predict(score_model, interval = "pred")
df1 <- cbind(evals_ch5, PIM)
ggplot(data = df1, aes(x = bty_avg, y = score)) +

geom_point() +
geom_smooth(method = "lm") +
geom_line(aes(y = upr), color = "purple",

linetype = "dashed") +
geom_line(aes(y = lwr), color = "purple",

linetype = "dashed") +
theme_bw() -> p1

p1
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Confidence Regions and Prediction Bands
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Regression: Teaching Evaluations Example
# Using the build in function
predict(score_model, newdata = data.frame(bty_avg = 7.333))

1
4.368987
# 90% Confidence Interval for E(Y_7.333)
predict(score_model, newdata = data.frame(bty_avg = 7.333),

interval = "conf", level = 0.90)

fit lwr upr
1 4.368987 4.280641 4.457333
# 90% Prediction Interval for Y_hat_7.333
predict(score_model, newdata = data.frame(bty_avg = 7.333),

interval = "pred", level = 0.90)

fit lwr upr
1 4.368987 3.483074 5.2549
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Section 6

Related topics

Spring 2024 (Appalachian State University) STT 3850 : Week 4 79 / 88



Correlation is not necessarily causation

Throughout this chapter we’ve been cautious when interpreting
regression slope coefficients.

We always discussed the “associated” effect of an explanatory variable x
on an outcome variable y.
We include the term “associated” to be extra careful not to suggest we
are making a causal statement.

For example when we looked at the teaching score and “beauty”
example:

For every increase of 1 unit in bty_avg there is an associated increase
of on average 0.067 units for the variable score.

while bty_avg is positively correlated with score, we can’t necessarily
make any statements about “beauty” scores’ direct causal effect on
teaching score without more information on how this study was
conducted.
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Correlation is not necessarily causation

Here is another example:

A not-so-great medical doctor goes through medical records and finds
that patients who slept with their shoes on tended to wake up more
with headaches.

So this doctor declares, “Sleeping with shoes on causes headaches!”
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Correlation is not necessarily causation

However, there is a good chance that if someone is sleeping with their
shoes on, it’s potentially because they are intoxicated from alcohol.

Higher levels of drinking leads to more hangovers, and hence more
headaches.
The amount of alcohol consumption here is what’s known as a
confounding/lurking variable.
It “lurks” behind the scenes, confounding the causal relationship (if any)
of “sleeping with shoes on” with “waking up with a headache”.

Z is a confounding variable.
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Correlation is not necessarily causation

Establishing causation is a tricky problem which requires:
1 carefully designed experiments or
2 methods to control for the effects of confounding variables

Both these approaches attempt, as best they can, either to take all
possible confounding variables into account or negate their impact.

This allows researchers to focus only on the relationship of interest: the
relationship between the outcome variable Y and the treatment
variable X.

As you read news stories, be careful not to fall into the trap of thinking
that correlation necessarily implies causation.
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Best-fitting line

Regression lines are also known as “best-fitting” lines. But what do we
mean by “best”?

Lets use the Teaching Evaluations Example.

we mark the observed value y with a circle, the fitted value ŷ with a square
and the residuals y − ŷ with a vertical blue line.
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Best-fitting line
Now say we repeated this process of computing residuals for all 463
courses’ instructors,

then we squared all the residuals, and
then we summed them.
We call this quantity the sum of squared residuals.

The sum of squared residuals is a measure of the lack of fit of a
model.

Larger values of the sum of squared residuals indicate a bigger lack of fit.
This corresponds to a worse fitting model.
If the regression line fits all the points perfectly, then the sum of squared
residuals is 0.

The regression line minimizes the sum of the squared residuals:
n∑

i=1
(yi − ŷi)2
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Best-fitting line

# Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)
# Get regression points:
regression_points <- get_regression_points(score_model)
head(regression_points)

# A tibble: 6 x 5
ID score bty_avg score_hat residual

<int> <dbl> <dbl> <dbl> <dbl>
1 1 4.7 5 4.21 0.486
2 2 4.1 5 4.21 -0.114
3 3 3.9 5 4.21 -0.314
4 4 4.8 5 4.21 0.586
5 5 4.6 3 4.08 0.52
6 6 4.3 3 4.08 0.22
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Best-fitting line

Any other straight line drawn in the figure would yield a sum of squared
residuals greater than 132.
# Compute sum of squared residuals
regression_points %>%

mutate(squared_residuals = residualˆ2) %>%
summarize(sum_of_squared_residuals = sum(squared_residuals))

# A tibble: 1 x 1
sum_of_squared_residuals

<dbl>
1 132.
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Best-fitting line

You can also get the residuals using the function resid on a linear model
object.
# Compute sum of squared residuals
eis <- resid(score_model)
RSS <- sum(eisˆ2)
RSS

[1] 131.8684
# or
anova(score_model)[2, 2]

[1] 131.8684
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