
STT 3850 : Week 3

Spring 2024

Appalachian State University

Spring 2024 (Appalachian State University) STT 3850 : Week 3 1 / 63

Section 1

Outline for the week

Spring 2024 (Appalachian State University) STT 3850 : Week 3 2 / 63

By the end of the week:

Data Wrangling
“Tidy” data

Spring 2024 (Appalachian State University) STT 3850 : Week 3 3 / 63

Section 2

Data Wrangling

Spring 2024 (Appalachian State University) STT 3850 : Week 3 4 / 63

Data Wrangling

In this chapter, we’ll introduce a series of functions from the dplyr package
for data wrangling. We will be able to take a data frame and “wrangle” it
(transform it) to suit your needs. Such functions include:

1 filter() a data frame’s existing rows to only pick out a subset of
them.

2 summarize() one or more of its columns/variables with a summary
statistic.

3 group_by() its rows. In other words, assign different rows to be part
of the same group.

We can then combine group_by() with summarize() to report
summary statistics for each group separately.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 5 / 63

Data Wrangling

4 mutate() its existing columns/variables to create new ones. For
example, convert hourly temperature recordings from degrees
Fahrenheit to degrees Celsius.

5 arrange() its rows. For example, sort the rows of weather in
ascending or descending order of temp.

6 join() it with another data frame by matching along a “key” variable.
In other words, merge these two data frames together.

An additional benefit from learning to use the dplyr package for data
wrangling is its similarity to the SQL (database querying language).

Spring 2024 (Appalachian State University) STT 3850 : Week 3 6 / 63

Needed packages

Let’s load all the packages needed for this chapter.
library(nycflights13)
library(ggplot2)
library(dplyr)

Spring 2024 (Appalachian State University) STT 3850 : Week 3 7 / 63

The pipe operator: %>%

Before we start, let’s first introduce a nifty tool that gets loaded with the
dplyr package: the pipe operator %>%.

The pipe operator allows us to combine multiple operations in R into a
single sequential chain of actions.

Let’s start with a hypothetical example:

Say you would like to perform a hypothetical sequence of operations on a
hypothetical data frame x using hypothetical functions f(), g(), and h():

1 Take x then
2 Use x as an input to a function f() then
3 Use the output of f(x) as an input to a function g() then
4 Use the output of g(f(x)) as an input to a function h()

Spring 2024 (Appalachian State University) STT 3850 : Week 3 8 / 63

The pipe operator: %>%

One way to achieve this sequence of operations is by using nesting
parentheses as follows:
h(g(f(x)))

You can obtain the same output as the hypothetical sequence of functions
as follows:
x %>% # take x

f() %>% # Use this output as the input to f() then
g() %>% # Use this output as the input to g() then
h() # Use this output as the input h()

This is much more human-readable because you can clearly read the
sequence of operations line-by-line.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 9 / 63

The pipe operator: %>%

Spring 2024 (Appalachian State University) STT 3850 : Week 3 10 / 63

The pipe operator: %>%

For example:
flights %>%

filter(carrier == "AS") %>%
select(year, month, arr_delay, dep_delay) %>%
slice_head(n = 3)

A tibble: 3 x 4
year month arr_delay dep_delay

<int> <int> <dbl> <dbl>
1 2013 1 -10 -1
2 2013 1 -19 -7
3 2013 1 -41 -3

Note that the pipe operator %>% has to come at the end of lines.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 11 / 63

filter rows

The filter() function allows you to specify criteria about the values of a
variable in your dataset and then filters out only the rows that match that
criteria.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 12 / 63

filter rows

We begin by focusing only on flights from New York City to Portland,
Oregon.

The dest destination code (or airport code) for Portland, Oregon is
“PDX”.
Run the following and look at the results in RStudio’s spreadsheet viewer
to ensure that only flights heading to Portland are chosen.

portland_flights <- flights %>%
filter(dest == "PDX")

View(portland_flights)

We test for equality using the double equal sign == and not a single equal
sign =.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 13 / 63

filter rows

You can use other operators beyond just the == operator that tests for
equality:

> corresponds to “greater than”
< corresponds to “less than”
>= corresponds to “greater than or equal to”
<= corresponds to “less than or equal to”
!= corresponds to “not equal to.” The ! is used in many programming
languages to indicate “not”.

Furthermore, you can combine multiple criteria using operators that
make comparisons:

| corresponds to “or”
& corresponds to “and”

Spring 2024 (Appalachian State University) STT 3850 : Week 3 14 / 63

filter rows

We filter flights for all rows that
departed from JFK and
were heading to Burlington, Vermont (“BTV”) or Seattle, Washington
(“SEA”) and
departed in the months of October, November, or December.

btv_sea_flights_fall <- flights %>%
filter(origin == "JFK" & (dest == "BTV" | dest == "SEA") &

month >= 10)
View(btv_sea_flights_fall)

One may use commas in place of &
btv_sea_flights_fall <- flights %>%

filter(origin == "JFK", (dest == "BTV" | dest == "SEA"),
month >= 10)

View(btv_sea_flights_fall)

Spring 2024 (Appalachian State University) STT 3850 : Week 3 15 / 63

filter rows

Lets filter rows corresponding to flights that didn’t go to Burlington, VT or
Seattle, WA.
not_BTV_SEA <- flights %>%

filter(!(dest == "BTV" | dest == "SEA"))
View(not_BTV_SEA)

Note note the careful use of parentheses. The code below will produce
different results.
flights %>%

filter(!dest == "BTV" | dest == "SEA")

Spring 2024 (Appalachian State University) STT 3850 : Week 3 16 / 63

filter rows

Say we have a larger number of airports we want to filter for. We could
continue to use the | (or) operator:
many_airports <- flights %>%

filter(dest == "SEA" | dest == "SFO" | dest == "PDX" |
dest == "BTV" | dest == "BDL")

A shorter approach will be to use %in% operator along with the c()
function.
many_airports <- flights %>%

filter(dest %in% c("SEA", "SFO", "PDX", "BTV", "BDL"))
View(many_airports)

The %in% operator is useful for looking for matches commonly in one
vector/variable compared to another.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 17 / 63

summarize variables

The next common task when working with data frames is to compute
summary statistics. Summary statistics are single numerical values that
summarize a large number of values.

Commonly known examples of summary statistics include
the mean (also called the average) ,
the median (the middle value),
the sum,
the smallest value also called the minimum,
the largest value also called the maximum, and
the standard deviation.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 18 / 63

summarize variables

Let’s calculate two summary statistics (mean and standard deviation) of the
temp temperature variable in the weather data frame from nycflights13
package.
summary_temp <- weather %>%

summarize(mean = mean(temp), std_dev = sd(temp))
summary_temp

A tibble: 1 x 2
mean std_dev

<dbl> <dbl>
1 NA NA

NAs appear as the answers since temp has NA values.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 19 / 63

summarize variables

If you want to ignore the NA values:
Set the na.rm argument to TRUE.
rm is short for “remove”; this will ignore any NA missing values and only
return the summary value for all non-missing values.

summary_temp <- weather %>%
summarize(mean_temp = mean(temp, na.rm = TRUE),

sd_temp = sd(temp, na.rm = TRUE))
summary_temp

A tibble: 1 x 2
mean_temp sd_temp

<dbl> <dbl>
1 55.3 17.8

Spring 2024 (Appalachian State University) STT 3850 : Week 3 20 / 63

summarize variables

Other summary functions we can use inside the summarize():

mean(): the average
sd(): the standard deviation, which is a measure of spread
min() and max(): the minimum and maximum values, respectively
IQR(): interquartile range
sum(): the total amount when adding multiple numbers
n(): a count of the number of rows in each group

Spring 2024 (Appalachian State University) STT 3850 : Week 3 21 / 63

group_by

Say instead of a single mean temperature for the whole year, you would
like 12 mean temperatures, one for each of the 12 months separately.

We would like to compute the mean temperature split by month.
We can do this by “grouping” temperature observations by the values of
another variable, in this case by the 12 values of the variable month.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 22 / 63

group_by

summary_monthly_temp <- weather %>%
group_by(month) %>%
summarize(mean = mean(temp, na.rm = TRUE),

std_dev = sd(temp, na.rm = TRUE),
count = n())

summary_monthly_temp %>%
slice_head(n = 3)

A tibble: 3 x 4
month mean std_dev count
<int> <dbl> <dbl> <int>

1 1 35.6 10.2 2226
2 2 34.3 6.98 2010
3 3 39.9 6.25 2227

Spring 2024 (Appalachian State University) STT 3850 : Week 3 23 / 63

Grouping by more than one variable

We can also group by more than one variable
by_origin_monthly <- flights %>%

group_by(origin, month) %>%
summarize(count = n())

dim(by_origin_monthly)

[1] 36 3

by_origin_monthly %>% head(n = 2)

A tibble: 2 x 3
Groups: origin [1]

origin month count
<chr> <int> <int>

1 EWR 1 9893
2 EWR 2 9107

Observe that there are 36 rows to by_origin_monthly because there are
12 months for 3 airports (EWR, JFK, and LGA).

Spring 2024 (Appalachian State University) STT 3850 : Week 3 24 / 63

Grouping by more than one variable

Why do we group_by(origin, month) and not group_by(origin) and
then group_by(month)? Let’s investigate:
by_origin_monthly_incorrect <- flights %>%

group_by(origin) %>%
group_by(month) %>%
summarize(count = n())

dim(by_origin_monthly_incorrect)

[1] 12 2

by_origin_monthly_incorrect %>% head(n = 2)

A tibble: 2 x 2
month count
<int> <int>

1 1 27004
2 2 24951

The second group_by(month) overwrote group_by(origin).
Spring 2024 (Appalachian State University) STT 3850 : Week 3 25 / 63

mutate existing variables

Another common transformation of data is to create/compute new variables
based on existing ones.

For example, we can create a new variable by converting temperatures from
◦F to ◦C using the formula

temp in C = temp in F − 32
1.8

Spring 2024 (Appalachian State University) STT 3850 : Week 3 26 / 63

mutate existing variables

We can apply this formula to the temp variable using the mutate()
function from the dplyr package.
weather %>%

mutate(temp_in_C = (temp - 32) / 1.8,
monthT = month.name[month]) -> weather

weather %>% select(month, monthT, temp_in_C, temp) %>%
head(n = 2)

A tibble: 2 x 4
month monthT temp_in_C temp
<int> <chr> <dbl> <dbl>

1 1 January 3.9 39.0
2 1 January 3.9 39.0

Spring 2024 (Appalachian State University) STT 3850 : Week 3 27 / 63

mutate existing variables

In this code:
we mutate() the weather data frame by creating a new variable
temp_in_C = (temp - 32) / 1.8,
create a new variable monthT that has the name of the months,
then overwrite the original weather data frame.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 28 / 63

mutate existing variables

Let’s compute monthly average temperatures in both ◦F and ◦C.
summary_monthly_temp <- weather %>%

group_by(month, monthT) %>%
summarize(mean_temp_in_F = mean(temp, na.rm = TRUE),

mean_temp_in_C = mean(temp_in_C, na.rm = TRUE))
summary_monthly_temp %>%

head(n = 4)

A tibble: 4 x 4
Groups: month [4]

month monthT mean_temp_in_F mean_temp_in_C
<int> <chr> <dbl> <dbl>

1 1 January 35.6 2.02
2 2 February 34.3 1.26
3 3 March 39.9 4.38
4 4 April 51.7 11.0

Spring 2024 (Appalachian State University) STT 3850 : Week 3 29 / 63

mutate existing variables

Let’s consider another example.

Passengers are often frustrated when their flight departs late, but
aren’t as annoyed if, in the end, pilots can make up some time during
the flight.

This is known in the airline industry as gain, and we will create this
variable using the mutate() function:

flights <- flights %>%
mutate(gain = dep_delay - arr_delay)

flights %>%
select(dep_delay, arr_delay, gain) -> flights_gain

Spring 2024 (Appalachian State University) STT 3850 : Week 3 30 / 63

mutate existing variables

flights_gain

A tibble: 336,776 x 3
dep_delay arr_delay gain

<dbl> <dbl> <dbl>
1 2 11 -9
2 4 20 -16
3 2 33 -31
4 -1 -18 17
5 -6 -25 19
6 -4 12 -16
7 -5 19 -24
8 -3 -14 11
9 -3 -8 5

10 -2 8 -10
i 336,766 more rows

Spring 2024 (Appalachian State University) STT 3850 : Week 3 31 / 63

mutate existing variables

Let’s look at some summary statistics of the gain variable
gain_summary <- flights %>%

summarize(
Min = min(gain, na.rm = TRUE),
Q1 = quantile(gain, 0.25, na.rm = TRUE),
Median = quantile(gain, 0.5, na.rm = TRUE),
Q3 = quantile(gain, 0.75, na.rm = TRUE),
Max = max(gain, na.rm = TRUE),
Mean = mean(gain, na.rm = TRUE),
SD = sd(gain, na.rm = TRUE),
Missing = sum(is.na(gain))

)
gain_summary

A tibble: 1 x 8
Min Q1 Median Q3 Max Mean SD Missing

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
1 -196 -3 7 17 109 5.66 18.0 9430

Spring 2024 (Appalachian State University) STT 3850 : Week 3 32 / 63

mutate existing variables
Since gain is a numerical variable, we can visualize its distribution using a
histogram.
ggplot(data = flights, mapping = aes(x = gain)) +

geom_histogram(color = "black", fill = "lightblue",
bins = 20) +

theme_bw() +
labs(title = "Distribution of Gain")

0

25000

50000

75000

100000

125000

−200 −100 0 100
gain

co
un

t

Distribution of Gain

Spring 2024 (Appalachian State University) STT 3850 : Week 3 33 / 63

arrange and sort rows

One of the most commonly performed data wrangling tasks is to sort a
data frame’s rows in alphanumeric order by one of the variables in the
data frame/tibble.

The dplyr package’s arrange() function allows us to sort/reorder a
data frame’s rows according to the values of a specified variable.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 34 / 63

arrange and sort rows

Suppose we are interested in determining the most frequent destination
airports for all domestic flights departing from New York City in 2013.
freq_dest <- flights %>%

group_by(dest) %>%
summarize(num_flights = n())

freq_dest %>% head(n = 3)

A tibble: 3 x 2
dest num_flights
<chr> <int>

1 ABQ 254
2 ACK 265
3 ALB 439

Observe that by default the rows of the resulting freq_dest data frame are
sorted in alphabetical order of destination.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 35 / 63

arrange and sort rows
Say instead we would like to see the same data, but sorted from the most to
the least number of flights (num_flights) instead
freq_dest %>%

arrange(num_flights) %>%
head(n = 5)

A tibble: 5 x 2
dest num_flights
<chr> <int>

1 LEX 1
2 LGA 1
3 ANC 8
4 SBN 10
5 HDN 15

This is, however, the opposite of what we want. The rows are sorted with
the least frequent destination airports displayed first.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 36 / 63

arrange and sort rows

To switch the ordering to be in “descending” order instead, we use the
desc() function.
freq_dest %>%

arrange(desc(num_flights)) %>%
head(n = 5)

A tibble: 5 x 2
dest num_flights
<chr> <int>

1 ORD 17283
2 ATL 17215
3 LAX 16174
4 BOS 15508
5 MCO 14082

Spring 2024 (Appalachian State University) STT 3850 : Week 3 37 / 63

join data frames

Another common data transformation task is “joining” or “merging” two
different datasets.

For example, in the flights data frame, the variable carrier lists the
carrier code for the different flights.

While the corresponding airline names for “UA” and “AA” might be
somewhat easy to guess (United and American Airlines), what airlines
have codes “VX”, “HA”, and “B6”?

This information is provided in a separate data frame airlines.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 38 / 63

join data frames

Lets see the data relationships from the nycflights13 package.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 39 / 63

Matching “key” variable names

In both the flights and airlines data frames, the key variable we want
to join/merge/match the rows by has the same name: carrier.

Let’s use the inner_join() function to join the two data frames,
where the rows will be matched by the variable carrier, and then
compare the resulting data frames:

flights_joined <- flights %>%
inner_join(airlines, by = "carrier")

View(flights)
View(flights_joined)

Observe that the flights and flights_joined data frames are identical
except that flights_joined has an additional variable name.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 40 / 63

Matching “key” variable names

A visual representation of the inner_join() is shown below

There are other types of joins available,
such as left_join(), right_join(), outer_join(), and
anti_join(),
but the inner_join() will solve nearly all of the problems you’ll
encounter in this class.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 41 / 63

Different “key” variable names

Say instead you are interested in the destinations of all domestic flights
departing NYC in 2013,

and you ask yourself questions like: “What cities are these airports in?”,
or “Is ORD Orlando?”, or “Where is FLL?”

The airports data frame contains the airport codes for each airport:
View(airports)

However, if you look at both the airports and flights data frames,
you’ll find that the airport codes are in variables that have different
names.

In airports the airport code is in faa.
whereas in flights the destination airport codes are in dest.
This fact is further highlighted in the visual representation of the
relationships between these data frames.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 42 / 63

Different “key” variable names

In order to join these two data frames by airport code, our inner_join()
operation will use the by = c("dest" = "faa") argument:
flights_with_airport_names <- flights %>%

inner_join(airports, by = c("dest" = "faa"))
View(flights_with_airport_names)

Spring 2024 (Appalachian State University) STT 3850 : Week 3 43 / 63

Different “key” variable names

Let’s construct the chain of pipe operators %>% that computes the number
of flights from NYC to each destination, but also includes information about
each destination airport:
named_dests <- flights %>%

group_by(dest) %>%
summarize(num_flights = n()) %>%
arrange(desc(num_flights)) %>%
inner_join(airports, by = c("dest" = "faa")) %>%
rename(airport_name = name)

named_dests[1:2, 1:4]

A tibble: 2 x 4
dest num_flights airport_name lat
<chr> <int> <chr> <dbl>

1 ORD 17283 Chicago Ohare Intl 42.0
2 ATL 17215 Hartsfield Jackson Atlanta Intl 33.6

Spring 2024 (Appalachian State University) STT 3850 : Week 3 44 / 63

Multiple “key” variables

Say instead we want to join two data frames by multiple key variables.

For example, from the visual representation of the relationships
between the data frame:

we see that in order to join the flights and weather data frames, we
need more than one key variable: year, month, day, hour, and origin.
This is because the combination of these 5 variables act to uniquely
identify each observational unit in the weather data frame: hourly
weather recordings at each of the 3 NYC airports.

We achieve this by specifying a vector of key variables to join by using
the c() function.

Recall, this function is short for “combine” or “concatenate.”

Spring 2024 (Appalachian State University) STT 3850 : Week 3 45 / 63

Multiple “key” variables

flights_weather_joined <- flights %>%
inner_join(weather, by = c("year", "month", "day",

"hour", "origin"))
flights_weather_joined[1:5, 1:6]

A tibble: 5 x 6
year month day dep_time sched_dep_time dep_delay

<int> <int> <int> <int> <int> <dbl>
1 2013 1 1 517 515 2
2 2013 1 1 533 529 4
3 2013 1 1 542 540 2
4 2013 1 1 544 545 -1
5 2013 1 1 554 600 -6

View(flights_weather_joined)

Spring 2024 (Appalachian State University) STT 3850 : Week 3 46 / 63

select variables

We’ve seen that the flights data frame in the nycflights13 package
contains 19 different variables.
#glimpse(flights)

Spring 2024 (Appalachian State University) STT 3850 : Week 3 47 / 63

select variables

However, say you only need two of these 19 variables, say carrier and
flight. You can select() these two variables:
flights_sub <-flights %>%

select(carrier, flight)

Let’s say instead you want to drop, or de-select, certain variables. For
example, lets say we want to remove the year in the flights data frame.
We can deselect year by using the - sign:
flights_no_year <- flights %>% select(-year)

Spring 2024 (Appalachian State University) STT 3850 : Week 3 48 / 63

select variables

Another way of selecting columns/variables is by specifying a range of
columns:
names(flights)

[1] "year" "month" "day" "dep_time"
[5] "sched_dep_time" "dep_delay" "arr_time" "sched_arr_time"
[9] "arr_delay" "carrier" "flight" "tailnum"

[13] "origin" "dest" "air_time" "distance"
[17] "hour" "minute" "time_hour" "gain"

flight_arr_times <- flights %>%
select(month:day, arr_time:sched_arr_time)

#flight_arr_times

This will select() all columns between month and day, as well as between
arr_time and sched_arr_time, and drop the rest.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 49 / 63

select variables

The select() function can also be used to reorder columns when used
with the everything() helper function.

For example, suppose we want the hour, minute, and time_hour
variables to appear immediately after the year, month, and day
variables, while not discarding the rest of the variables.

In the following code, everything() will pick up all remaining
variables:

flights_reorder <- flights %>%
select(year, month, day, hour, minute, time_hour,

everything())
glimpse(flights_reorder)

Spring 2024 (Appalachian State University) STT 3850 : Week 3 50 / 63

select variables

Lastly, the helper functions starts_with(), ends_with(), and
contains() can be used to select variables/columns that match those
conditions. As examples,
flights_sub1 <- flights %>% select(starts_with("a"))
flights_sub2 <- flights %>% select(ends_with("delay"))
flights_sub3 <- flights %>% select(contains("time"))

Spring 2024 (Appalachian State University) STT 3850 : Week 3 51 / 63

Summary table

Spring 2024 (Appalachian State University) STT 3850 : Week 3 52 / 63

Section 3

“Tidy” data

Spring 2024 (Appalachian State University) STT 3850 : Week 3 53 / 63

“Tidy” data

Let’s now learn about the concept of “tidy” data format.
library(fivethirtyeight)
drinks_smaller <- drinks %>%

filter(country %in% c("USA", "China", "Italy",
"Saudi Arabia")) %>%

select(-total_litres_of_pure_alcohol) %>%
rename(beer = beer_servings, spirit = spirit_servings,

wine = wine_servings)
drinks_smaller

A tibble: 4 x 4
country beer spirit wine
<chr> <int> <int> <int>

1 China 79 192 8
2 Italy 85 42 237
3 Saudi Arabia 0 5 0
4 USA 249 158 84

Spring 2024 (Appalachian State University) STT 3850 : Week 3 54 / 63

“Tidy” data

The drinks_smaller data frame, cannot be used to create the
side-by-side barplot show below.

why?

Spring 2024 (Appalachian State University) STT 3850 : Week 3 55 / 63

“Tidy” data

Let’s break down the grammar of graphics we introduced earlier:
The categorical variable country with four levels (China, Italy, Saudi
Arabia, USA) would have to be mapped to the x-position of the bars.

The numerical variable servings would have to be mapped to the
y-position of the bars (the height of the bars).

The categorical variable type with three levels (beer, spirit, wine) would
have to be mapped to the fill color of the bars.

To recreate the barplot above, our data frame should be in the “tidy”
format.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 56 / 63

“Tidy” data: Definition

The word “tidy” in data science means that your data follows a
standardized format.

“Tidy” data is a standard way of mapping the meaning of a dataset to
its structure. A dataset is messy or tidy depending on how rows,
columns and tables are matched up with observations, variables and
types.

In tidy data:
Each variable forms a column.
Each observation forms a row.
Each type of observational unit forms a table.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 57 / 63

“Tidy” data: Definition

Stock prices (non-tidy format):

Stock prices (tidy format):

Spring 2024 (Appalachian State University) STT 3850 : Week 3 58 / 63

“Tidy” data: Definition

Observe that:
The non-tidy format of the stock prices is what’s known as “wide”
format, whereas - the tidy format is known as “long/narrow” format.

In the context of doing data science, long/narrow format is also
known as “tidy” format.

In order to use the ggplot2 and dplyr packages for data visualization
and data wrangling, your input data frames must be in “tidy” format.

Thus, all non-“tidy” data must be converted to “tidy” format first.

Spring 2024 (Appalachian State University) STT 3850 : Week 3 59 / 63

Coverting to “Tidy” format

We convert the drinks_smaller data to “tidy” format by using the
pivot_longer() function from the tidyr package:
library(tidyr)
drinks_smaller_tidy <- drinks_smaller %>%

pivot_longer(names_to = "type",
values_to = "servings",
cols = -country)

Spring 2024 (Appalachian State University) STT 3850 : Week 3 60 / 63

Coverting to “Tidy” format
drinks_smaller_tidy

A tibble: 12 x 3
country type servings
<chr> <chr> <int>

1 China beer 79
2 China spirit 192
3 China wine 8
4 Italy beer 85
5 Italy spirit 42
6 Italy wine 237
7 Saudi Arabia beer 0
8 Saudi Arabia spirit 5
9 Saudi Arabia wine 0

10 USA beer 249
11 USA spirit 158
12 USA wine 84

Spring 2024 (Appalachian State University) STT 3850 : Week 3 61 / 63

Coverting to “Tidy” format

Note that the two ways to specify the vector argument to cols produce the
same output.
library(tidyr)
drinks_smaller %>%

pivot_longer(names_to = "type",
values_to = "servings",
cols = c(beer, spirit, wine))

Or
drinks_smaller %>%

pivot_longer(names_to = "type",
values_to = "servings",
cols = beer:wine)

Spring 2024 (Appalachian State University) STT 3850 : Week 3 62 / 63

Coverting to “Tidy” format

library(tidyr)
ggplot(drinks_smaller_tidy, aes(x = country, y = servings,

fill = type)) +
geom_col(position = "dodge") +
theme_bw()

0

50

100

150

200

250

China Italy Saudi Arabia USA
country

se
rv

in
gs

type

beer

spirit

wine

Spring 2024 (Appalachian State University) STT 3850 : Week 3 63 / 63

	Outline for the week
	Data Wrangling
	``Tidy'' data

