
STT 3850 : Week 2

Spring 2024

Appalachian State University

Spring 2024 (Appalachian State University) STT 3850 : Week 2 1 / 87

Section 1

Outline for the week

Spring 2024 (Appalachian State University) STT 3850 : Week 2 2 / 87

By the end of the week:

Control Structures in R
Quarto
Data Visualization

Spring 2024 (Appalachian State University) STT 3850 : Week 2 3 / 87

https://quarto.org/

Section 2

Control Structures in R

Spring 2024 (Appalachian State University) STT 3850 : Week 2 4 / 87

Control Structures in R

R executes statements/commands sequentially. If you want to control the
flow of statement execution, you need to use control structures.

The basic component of most control structures is the conditional
statement.

A conditional statement is an R statement that is evaluated as either
TRUE or FALSE. They use relational operators such as

== for testing equality of R objects,

!= for testing if two R objects are not equal, <,> ,<= and >=.

As an example, look at the following R commands:

Spring 2024 (Appalachian State University) STT 3850 : Week 2 5 / 87

Conditional Statement

x <- c(1, 2, 3) # creates a vector named x
y <- c(1, 2, 4)
x == y

[1] TRUE TRUE FALSE

The result of executing the last command is a vector containing the
logical values TRUE, TRUE and FALSE since the only elements of the
vectors x and y that are not equal are the 3rd elements.

Similarly,
x != y

[1] FALSE FALSE TRUE

Spring 2024 (Appalachian State University) STT 3850 : Week 2 6 / 87

Conditional Statement and Logical Operators

Conditional statements can be combined using logical operators &, |
and !.

The operator & means AND.
The operator | means OR
and the operator ! means NOT.

As an example of the use of &, the following will yield TRUE since both
conditions are TRUE.
(x[1] == y[1]) & (x[2] == y[2])

[1] TRUE

On the other hand,
(x[1] == y[1]) & (x[3] == y[3])

[1] FALSE

Spring 2024 (Appalachian State University) STT 3850 : Week 2 7 / 87

Conditional Statement and Logical Operators

However, the following will yield TRUE since at least one condition is
TRUE. That is, the | operator will yield TRUE if at least one of the
conditions is TRUE.
(x[1] == y[1]) | (x[3] == y[3])

[1] TRUE

To negate the truth value of the above statement, use !:
!((x[1] == y[1]) | (x[3] == y[3]))

[1] FALSE

Note the use of parentheses.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 8 / 87

Conditional Statement and Logical Operators

To see the effect of parentheses, let’s remove the parentheses in the
previous statement.
!(x[3] == y[3]) | (x[1]==y[1])

[1] TRUE

A control structure that uses conditional statement(s) is the if statement
and its variant if else and if else if.

The if statement will perform an R command or a series of R
commands only if the conditional statement is TRUE.

Lets see an example.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 9 / 87

If Statement

The following will display the value of the sum of the first two elements of
the vector x since the conditional statement is TRUE.
if (x[1] == y[1]){

sumx <- x[1] + x[2]
sumx

}

[1] 3

Similarly, the following code will not display anything since the conditional
statement is FALSE and hence R will not execute the R statements within
the square brackets.
if (x[1] != y[1]){

sumy <- y[1] + y[2]
sumy

}

Spring 2024 (Appalachian State University) STT 3850 : Week 2 10 / 87

If Statement

Note that the syntax of an if statement is as follows

if (conditional statement) {R statements}
brackets are optional if there is only one R statement

If you want R to perform either a series of R statements
(say A) when the conditional statement is TRUE or
another series of R statements (say B) when the conditional statement is
FALSE
use the if else structure which is as follows:

if (condition) {R statements A }else{ R statements B}

Spring 2024 (Appalachian State University) STT 3850 : Week 2 11 / 87

If Else Statement

As an example, the following will display the sum of the elements of x since
the conditional statement is TRUE:
if (x[1] == y[1]){

sumx <- sum(x)
sumx

} else {
sumy <- sum(y)
sumy

}

[1] 6

Spring 2024 (Appalachian State University) STT 3850 : Week 2 12 / 87

If Else Statement

On the other hand, the following will display the sum of the elements of y
since the conditional statement is FALSE:
if (x[1] != y[1]){

sumx <- sum(x)
sumx

} else {
sumy <- sum(y)
sumy

}

[1] 7

Spring 2024 (Appalachian State University) STT 3850 : Week 2 13 / 87

If Else If Statement

The other variant of the if statement is the if else if structure which has
the following syntax:

if (condition 1) {R statements A } else if (condition 2) {R statement B
} else if (condition 3) {R statement C } else { R statement D}

You can have more than 3 conditions to test so the structure could be
longer.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 14 / 87

If Else If Statement

As an example, the following code will display the sum of the elements of y
since the 1st condition is FALSE and 2nd condition is TRUE. It will not
evaluate the 3rd condition.
if (x[1] != y[1]){

sumx <- sum(x)
sumx

} else if (x[2] == y[2]) {
sumy <- sum(y)
sumy
} else if (x[3]!=y[3]) {
prodx <- x[1]*x[2]*x[3]
prodx
} else {
prody <- y[1]*y[2]*y[3]
prody

}

[1] 7
Spring 2024 (Appalachian State University) STT 3850 : Week 2 15 / 87

If Else If Statement

On the other hand, the following will display the product of the elements of
y (the content of the object prody) since the 3 conditions are FALSE:
if (x[1]!=y[1]){

sumx <- sum(x)
sumx

} else if (x[2]!=y[2]) {
sumy <- sum(y)
sumy
} else if (x[3]==y[3]) {

prodx <- x[1]*x[2]*x[3]
prodx

} else {
prody <- y[1]*y[2]*y[3]
prody

}

[1] 8

Spring 2024 (Appalachian State University) STT 3850 : Week 2 16 / 87

For Loop Statement

The for loop is one of the most useful control structures in R. Its syntax is
as follows

for (index variable in sequence) {R statements}

The index variable is usually a dummy integer variable (can have any name)
but i, j, k, etc are often used. For example, the following code will display
the text “HELLO” five times.
for (i in 1:5){

print("HELLO")
}

[1] "HELLO"
[1] "HELLO"
[1] "HELLO"
[1] "HELLO"
[1] "HELLO"

Spring 2024 (Appalachian State University) STT 3850 : Week 2 17 / 87

For Loop Statement

Similarly, the following code will do the same thing:
for (j in 6:10){

print("HELLO")
}

[1] "HELLO"
[1] "HELLO"
[1] "HELLO"
[1] "HELLO"
[1] "HELLO"

The for loop is useful when you want to repeat a command and you know
exactly how many times you want the command repeated.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 18 / 87

For Loop Statement

The following code will display the contents of the vector z in reverse
order.

Note that the first statement creates a vector of length 10.
Without the reverse.z <- numeric(10) command, R will display an
error message saying object reverse.z not found.

reverse.z <- numeric(10)
z <- 1:10
for (k in 1:10){

reverse.z[k]<- z[10 -k + 1]
}
reverse.z

[1] 10 9 8 7 6 5 4 3 2 1

Spring 2024 (Appalachian State University) STT 3850 : Week 2 19 / 87

Section 3

Quarto

Spring 2024 (Appalachian State University) STT 3850 : Week 2 20 / 87

Quarto

Quarto provides an easy way to produce rich, fully-documented,
reproducible analyses.

It allows users to share a single file containing
all of the comments,
R code, and
metadata needed to reproduce the analysis from beginning to end.

Quarto allows you to
combine chunks of R code with Markdown text and produce a nicely
formatted HTML, PDF, or Word file,
without having to know any HTML or LaTeX code or fuss with getting
the formatting just right in a Microsoft Word DOCX file.

I think you’ll be pleasantly surprised at how easy it is to write a Quarto
document once you get the hang of it.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 21 / 87

Create New Quarto File

To open/create a new (Quarto) file, click on the little green plus on the
upper left hand and select Quarto Document; see Figure 1.

Figure 1: How to open a *.qmd file

Spring 2024 (Appalachian State University) STT 3850 : Week 2 22 / 87

Create New Quarto File

Let’s make some changes to the Quarto file you just opened

First, change the title of the lab at the top to “Getting to Know
RStudio.”
Second, add an author line, and insert your name. You need quotation
marks!
Third, name and save the file as first_quarto.qmd.

After editing the file you Render to your desired output format (HTML,
PDF, or Word file).

Spring 2024 (Appalachian State University) STT 3850 : Week 2 23 / 87

The Components of a Quarto File: YAML

The top part of the file is called the YAML header.

YAML is a recursive acronym that stands for “YAML Ain’t Markup
Language”

YAML is defined on its official website at http://yaml.org as: a human
friendly data serialization standard for all programming languages.

The YAML header stores the metadata needed for the document.

You can see an example of a YAML header from our
first_quarto.qmd file below.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 24 / 87

http://yaml.org

The Components of a Quarto File: Headers

You can create many different sized headers by simply adding one or more
in front of the text you’d like to denote the header.

Top level header
Second level header
Third level header
Fourth level header

Now let us change the last header (Running Code) in our
first_quarto.qmd file to ###.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 25 / 87

The Components of Quarto File: Emphasis

We can add italics by surrounding the word by
a single underscore or
a single asterisk.

As we saw in our first_quarto.qmd file we can can bold a word by
surrounding the word by

two underscores or
two asterisks.

Now let us italicize the first time weave appears in our
first_quarto.qmd.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 26 / 87

The Components of a Quarto File: Links

To add a link to a URL,
you simply enclose the text you’d like displayed in the resulting HTML
file inside [] and
then the link itself inside () right next to each other with no space in
between.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 27 / 87

The Components of a Quarto File: Lists

To create an unordered list, use - in front of each item.

We can also create ordered list by using numbers, letters or roman
numerals.

Create the following in our first_quarto.qmd file.
Create a new second level header with the name “Ordered Lists”.
Under the “Ordered Lists” header, create a sub-list using letters (i, ii).
Under the “Ordered Lists” header, create a sub-list using numbers (1, 2).

Spring 2024 (Appalachian State University) STT 3850 : Week 2 28 / 87

The Components of a Quarto File: Equations

If you’d like nice mathematical formulas in your document, you can
add them between two dollar signs.

Now let us do the following in our first_quarto.qmd file.
Add another second level header: Equations
Type: y = mx + b

Spring 2024 (Appalachian State University) STT 3850 : Week 2 29 / 87

The Components of a Quarto File: Inline R code

We’ve seen that we can add R code and have that run in an R chunk
of code enclosed by three backticks.

However, what if we wanted to include the results of a simple
calculation directly in the text of our document? Quarto can do that
as well:

Now let us do the following in our ‘first_quarto.qmd file.
Under the Equations header
Type: Multiplying 7 by 14 gives us the result 98 (using inline R code).

Spring 2024 (Appalachian State University) STT 3850 : Week 2 30 / 87

The Components of a Quarto File: Chunk Options

You can set many options on a chunk by chunk basis. The most common R
chunk options are echo, eval, and include. By default, all three of these
options are set to TRUE,

echo dictates whether the code that produces the result should be
printed before the corresponding R output.

eval specifies whether the code should be evaluated or just displayed
without its output.

include specifies whether the code AND its output should be
included in the resulting rendered document. If it is set to FALSE the
code is run, but neither the code or its output are included in the
resulting document.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 31 / 87

The Components of a Quarto File: Chunk Options

Do the following in your ‘first_quarto.qmd document.
Create a second level header named “Code Chunks” at the end of your
document.
Create an R code chunk and set echo = FALSE.
Inside the code chunk type 5 + 15 > 19.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 32 / 87

Spell Check

Near the top of your editor window sits one of the more useful tools for
writing documents:

The spell-check button.
The spell-check button is the green check-mark with “ABC” above it.

Before you submit a document or share it with someone else, please
spell check your document!

Spell check your ‘first_quarto.qmd document. Did you have an
typos?

Spring 2024 (Appalachian State University) STT 3850 : Week 2 33 / 87

Section 4

Data Visualization

Spring 2024 (Appalachian State University) STT 3850 : Week 2 34 / 87

Data Visualization

We begin the development of your data science toolbox with data
visualization.

By visualizing data, we gain valuable insights we couldn’t initially
obtain from just looking at the raw data values.

At their most basic, graphics/plots/charts (we use these terms
interchangeably) provide a nice way to explore the patterns in data,
such as

the presence of outliers,
distributions of individual variables, and
relationships between groups of variables.

Graphics are designed to emphasize the findings and insights you want
your audience to understand.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 35 / 87

Needed packages

Let’s load all the packages needed for this chapter. You need to install them
if you haven’t already.
library(nycflights13)
library(ggplot2)
library(moderndive)

Spring 2024 (Appalachian State University) STT 3850 : Week 2 36 / 87

The grammar of graphics

We start with a discussion of a theoretical framework for data visualization
known as “the grammar of graphics.”

This framework serves as the foundation for the ggplot2 package
which we’ll use extensively in this class.

Think of how we construct and form sentences in English by combining
different elements, like nouns, verbs, articles, subjects, objects, etc.

We can’t just combine these elements in any arbitrary order;
we must do so following a set of rules known as a linguistic grammar.

Similarly to a linguistic grammar, “the grammar of graphics” defines a
set of rules for constructing statistical graphics by combining different
types of layers.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 37 / 87

Components of the grammar

In short, the grammar tells us that

A statistical graphic is a mapping of data variables to aesthetic
attributes of geometric objects.

Specifically, we can break a graphic into the following three essential
components:

1 data: the dataset containing the variables of interest.
2 geom: the geometric object in question. This refers to the type of

object we can observe in a plot. For example: points, lines, and bars.
3 aes: aesthetic attributes of the geometric object. For example, x/y

position, color, shape, and size. Aesthetic attributes are mapped to
variables in the dataset.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 38 / 87

Other components

There are other components of the grammar of graphics we can control as
well. In this class, we’ll keep things simple and only work with these two
additional components:

faceting breaks up a plot into several plots split by the values of
another variable

position adjustments for barplots.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 39 / 87

Five named graphs - the 5NG

We will only focus on five different types of graphics, each with a commonly
given name. - We term these “five named graphs” or in abbreviated form,
the 5NG:

1 scatterplots
2 linegraphs
3 histograms
4 boxplots
5 barplots

We’ll also present some variations of these plots

Note that:
certain plots are only appropriate for categorical variables,
while others are only appropriate for numerical variables.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 40 / 87

5NG#1: Scatterplots

The simplest of the 5NG are scatterplots, also called bivariate plots. They
allow you to visualize the relationship between two numerical variables.

Let’s view them through the lens of the grammar of graphics we
presented earlier.

Specifically, we will visualize the relationship between the following two
numerical variables in the alaska_flights data frame included in the
moderndive package:

1 dep_delay: departure delay on the horizontal “x” axis and
2 arr_delay: arrival delay on the vertical “y” axis

Spring 2024 (Appalachian State University) STT 3850 : Week 2 41 / 87

Scatterplots via geom_point
ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +

geom_point() +
theme_bw()

0

100

200

0 50 100 150 200
dep_delay

ar
r_

de
la

y

We observe that a positive relationship exists between arr_delay and
dep_delay: as departure delays increase, arrival delays tend to also
increase.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 42 / 87

Scatterplots via geom_point

Within the ggplot() function, we specify two of the components of
the grammar of graphics as arguments (i.e., inputs):

1 The data as the alaska_flights data frame via data =
alaska_flights.

2 The aesthetic mapping by setting mapping = aes(x = dep_delay,
y = arr_delay).

We then add a layer to the ggplot() function call using the + sign.
The added layer in question specifies the third component of the
grammar: the geometric object.
In this case, the geometric object is set to be points by specifying
geom_point().

Spring 2024 (Appalachian State University) STT 3850 : Week 2 43 / 87

Scatterplots via geom_point

Note that the + sign comes at the end of lines, and not at the beginning.
You’ll get an error in R if you put it at the beginning of a line.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 44 / 87

Overplotting

From the scatterplot from the alaska_flights, the large mass of points
near (0, 0), can cause some confusion since it is hard to tell the true number
of points that are plotted.

This is the result of a phenomenon called overplotting.
This corresponds to points being plotted on top of each other over and
over again.
When this occurs, it is difficult to know the number of points being
plotted.

There are two methods to address the issue of overplotting. Either by
Adjusting the transparency of the points or
adding a little random “jitter”, or random “nudges”, to each of the
points.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 45 / 87

Method 1: Changing the transparency

Change the transparency/opacity of the points by setting the alpha
argument in geom_point().

We can change the alpha argument to be any value between 0 and 1,
where 0 sets the points to be 100% transparent and
1 sets the points to be 100% opaque.

By default, alpha is set to 1. In other words, if we don’t explicitly set
an alpha value, R will use alpha = 1.

Note how the following code is identical to the earlier code that created the
scatterplot with overplotting, but with alpha = 0.2 added to the
geom_point() function.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 46 / 87

Method 1: Changing the transparency

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_point(alpha = 0.2) +
theme_bw()

0

100

200

0 50 100 150 200
dep_delay

ar
r_

de
la

y

Now areas with a high-degree of overplotting are darker, whereas areas with
a lower degree are less dark.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 47 / 87

Method 2: Jittering the points

The second way of addressing overplotting is by jittering all the points.

This means giving each point a small “nudge” in a random direction.
You can think of “jittering” as shaking the points around a bit on the
plot.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 48 / 87

Method 2: Jittering the points

Example: Say we have a data frame with 4 identical rows of x and y
values: (0,0), (0,0), (0,0), and (0,0)

scatterplot of these 4 points (on the left)
and its jittered counterpart (on the right)

Spring 2024 (Appalachian State University) STT 3850 : Week 2 49 / 87

Method 2: Jittering the points
ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +

geom_jitter(width = 30, height = 30) +
theme_bw()

−100

0

100

200

−50 0 50 100 150 200
dep_delay

ar
r_

de
la

y

Which method was better?

Keep in mind, that jittering is strictly a visualization tool; the original
values saved in the data frame remain unchanged.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 50 / 87

5NG#2: Linegraphs

Linegraphs show the relationship between two numerical variables when
the variable on the x-axis, also called the explanatory variable, is of a
sequential nature. In other words, there is an inherent ordering to the
variable.

The most common examples of linegraphs have some notion of time on
the x-axis: hours, days, weeks, years, etc.

Since time is sequential, we connect consecutive observations of the
variable on the y-axis with a line.
Linegraphs that have some notion of time on the x-axis are also called
time series plots.

Lets explore the early_january_weather data frame included in the
moderndive package, which contains hourly weather observations.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 51 / 87

Linegraphs via geom_line

ggplot(data = early_january_weather,
mapping = aes(x = time_hour, y = temp)) +

geom_line(color = "blue") +
theme_bw()

30

40

50

Jan 07 Jan 14
time_hour

te
m

p

We observe an upward trend and seasonality.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 52 / 87

5NG#3: Histograms

Let’s consider the temp variable in the weather data frame from the
nycflights13 package.

Here, we only care about how the values of temp distribute. In other
words:

1 What are the smallest and largest values?
2 What is the “center” or “most typical” value?
3 How do the values spread out?
4 What are frequent and infrequent values?

Spring 2024 (Appalachian State University) STT 3850 : Week 2 53 / 87

5NG#3: Histograms

One way to do that is by producing a histogram. A histogram is a plot
that visualizes the distribution of a numerical value as follows:

1 We first cut up the x-axis into a series of bins, where each bin
represents a range of values.

2 For each bin, we count the number of observations that fall in the
range corresponding to that bin.

3 Then for each bin, we draw a bar whose height marks the
corresponding count.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 54 / 87

Histograms via geom_histogram
ggplot(data = weather, mapping = aes(x = temp)) +

geom_histogram() +
theme_bw()

0

500

1000

1500

25 50 75 100
temp

co
un

t

Note that:
The y-aesthetic of a histogram, the count of the observations in each
bin, gets computed for you automatically.
The histogram was constructed using bins = 30 (Default value).

Spring 2024 (Appalachian State University) STT 3850 : Week 2 55 / 87

Histograms via geom_histogram

Now let’s unpack the resulting histogram

Observe that values less than 25◦F as well as values above 80◦F are
rather rare.

However, because of the large number of bins, it’s hard to get a sense
for which range of temperatures is spanned by each bin

let’s add white vertical borders demarcating the bins by adding a color
= "white" argument to geom_histogram().

Spring 2024 (Appalachian State University) STT 3850 : Week 2 56 / 87

Histograms via geom_histogram
ggplot(data = weather, mapping = aes(x = temp)) +

geom_histogram(color = "white") +
theme_bw()

0

500

1000

1500

25 50 75 100
temp

co
un

t

We now have an easier time associating ranges of temperatures to each
of the bins.

We can also vary the color of the bars by setting the fill argument.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 57 / 87

Histograms via geom_histogram
ggplot(data = weather, mapping = aes(x = temp)) +

geom_histogram(color = "black", fill = "purple") +
theme_bw()

0

500

1000

1500

25 50 75 100
temp

co
un

t

Run colors() to see all 657 possible choice of colors in R!
Note that in the 50-75◦F range there appear to be roughly 8 bins.
Thus each bin has width 25 divided by 8 or 3.125◦F.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 58 / 87

Adjusting the bins

Method 1: By adjusting the number of bins via the bins argument to
geom_histogram().
ggplot(data = weather, mapping = aes(x = temp)) +

geom_histogram(bins = 40, color = "black", fill = "purple") +
theme_bw()

0

500

1000

1500

25 50 75 100
temp

co
un

t

Spring 2024 (Appalachian State University) STT 3850 : Week 2 59 / 87

Adjusting the bins

Method 2: By adjusting the width of the bins via the binwidth argument
to geom_histogram()
ggplot(data = weather, mapping = aes(x = temp)) +

geom_histogram(binwidth = 10, color = "black", fill = "purple") +
theme_bw()

0

1000

2000

3000

4000

5000

0 25 50 75 100
temp

co
un

t

Spring 2024 (Appalachian State University) STT 3850 : Week 2 60 / 87

Facets

Before continuing with the next of the 5NG, let’s briefly introduce a new
concept called faceting.

Faceting is used when we’d like to split a particular visualization by the
values of another variable.

This will create multiple copies of the same type of plot with matching
x and y axes, but whose content will differ.

Example: lets Looking at how the histogram of hourly temperature
recordings at the three NYC airports we saw earlier differed in each month.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 61 / 87

Facets
ggplot(data = weather, mapping = aes(x = temp)) +

geom_histogram(binwidth = 5, color = "black", fill = "lightblue") +
facet_wrap(vars(month)) +
theme_bw()

9 10 11 12

5 6 7 8

1 2 3 4

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

temp

co
u

n
t

Spring 2024 (Appalachian State University) STT 3850 : Week 2 62 / 87

Facets

We can also specify the number of rows and columns in the grid by using
the nrow and ncol arguments inside of facet_wrap().
ggplot(data = weather, mapping = aes(x = temp)) +

geom_histogram(binwidth = 5, color = "black", fill = "lightblue") +
facet_wrap(vars(month), nrow = 4) +
theme_bw()

10 11 12

7 8 9

4 5 6

1 2 3

25 50 75 100 25 50 75 100 25 50 75 100

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

temp

co
un

t

Spring 2024 (Appalachian State University) STT 3850 : Week 2 63 / 87

5NG#4: Boxplots

Another type of visualization that can be used to compare the distribution
of a numerical variable split by the values of another variable is a
side-by-side boxplot.

A boxplot is constructed from the information provided in the
five-number summary of a numerical variable.

Let’s see an example of a boxplot using hourly temperature recordings
for the month of November.

Minimum: 21◦F
First quartile (25th percentile):36◦F
Median (second quartile, 50th percentile): 45◦F
Third quartile (75th percentile): 52◦F
Maximum: 71◦F

Spring 2024 (Appalachian State University) STT 3850 : Week 2 64 / 87

5NG#4: Boxplots

From the figure below:
In the leftmost plot let’s mark these 5 values with dashed horizontal
lines on top of the 2141 points(observations).
In the middle plot, let’s add the boxplot.
In the rightmost plot, let’s remove the points and the dashed horizontal
lines for clarity’s sake.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 65 / 87

5NG#4: Boxplots

From the Boxplot:

25% of observations were below 36◦F.

25% of observations were between 36◦F and 45◦F and 50% of
observations were below 45◦F.

25% of observations were between 45◦F and 52◦F and 75% of
observations were below 52◦F.

25% of observations were above 52◦F.

The middle 50% of points lie within the interquartile range (IQR)
between the first and third quartile. IQR for this example is 52 - 36 =
16◦F.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 66 / 87

5NG#4: Boxplots

From the Boxplot:

The whiskers stick out from either end of the box all the way to the
minimum(21◦F) and maximum observed temperatures (71◦F).

However, the whiskers extend no more than 1.5× IQR from either end of
the box.
Any observed values outside this range get marked with points called
outliers.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 67 / 87

Boxplots via geom_boxplot: Invalid specification
ggplot(data = weather, mapping = aes(x = month, y = temp)) +

geom_boxplot() +
theme_bw()

25

50

75

100

3 6 9
month

te
m

p

Observe that this plot does not provide information about temperature
separated by month.

Boxplots, require a categorical variable to be mapped to the x-position
aesthetic. But the month variable is numerical variable.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 68 / 87

Boxplots via geom_boxplot

ggplot(data = weather, mapping = aes(x = factor(month), y = temp)) +
geom_boxplot(fill = "lightblue") +
theme_bw()

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12
factor(month)

tem
p

Thus the 12 separate boxplots are shown “side-by-side.”

Spring 2024 (Appalachian State University) STT 3850 : Week 2 69 / 87

5NG#5: Barplots

Both histograms and boxplots are tools to visualize the distribution of
numerical variables.

Another commonly desired task is to visualize the distribution of a
categorical variable.

we are simply counting different categories within a categorical variable,
also known as the levels of the categorical variable

Often the best way to visualize these different counts, also known as
frequencies, is with barplots (also called barcharts).

Spring 2024 (Appalachian State University) STT 3850 : Week 2 70 / 87

5NG#5: Barplots

One complication, however, is how your data is represented.
Is the categorical variable of interest “pre-counted” or not?

For example, run the following code that manually creates two data
frames representing a collection of fruit: 3 apples and 2 oranges.

library(dplyr)
fruits <- tibble(

fruit = c("apple", "apple", "orange", "apple", "orange")
)
fruits_counted <- tibble(

fruit = c("apple", "orange"),
number = c(3, 2)

)

Spring 2024 (Appalachian State University) STT 3850 : Week 2 71 / 87

5NG#5: Barplots

fruits

A tibble: 5 x 1
fruit
<chr>

1 apple
2 apple
3 orange
4 apple
5 orange
fruits_counted

A tibble: 2 x 2
fruit number
<chr> <dbl>

1 apple 3
2 orange 2

Depending on how your categorical data is represented, you’ll need to add a
different geometric layer type to your ggplot() to create a barplot.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 72 / 87

Barplots via geom_bar

ggplot(data = fruits, mapping = aes(x = fruit)) +
geom_bar(fill = c("red", "orange")) +
theme_bw()

0

1

2

3

apple orange
fruit

co
un

t

When the categorical variable whose distribution you want to visualize is
not pre-counted in your data frame, we use geom_bar().

Spring 2024 (Appalachian State University) STT 3850 : Week 2 73 / 87

Barplots via geom_col

ggplot(data = fruits_counted, mapping = aes(x = fruit, y = number)) +
geom_col(fill = c("red", "orange")) +
theme_bw()

0

1

2

3

apple orange
fruit

nu
mb

er

When the categorical variable whose distribution you want to visualize is
pre-counted in your data frame, we use geom_col().

Spring 2024 (Appalachian State University) STT 3850 : Week 2 74 / 87

Barplots for flights data

Let’s now go back to the flights data frame in the nycflights13
package and visualize the distribution of the categorical variable carrier.

Because the flights have not been pre-counted by carrier, we
use geom_bar().

Spring 2024 (Appalachian State University) STT 3850 : Week 2 75 / 87

Barplots for flights data

ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar(fill = "lightblue") +
theme_bw()

0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

Spring 2024 (Appalachian State University) STT 3850 : Week 2 76 / 87

Pie charts

One of the most common plots used to visualize the distribution of
categorical data is the pie chart.

A pie chart presents each category as a slice of a circle so that each
slice has a size that is proportional to the whole in each category.

While they may seem harmless enough, pie charts actually present a
problem in that humans are unable to judge angles well.

In other words, it is difficult for us to determine the relative size of one
piece of the pie compared to another.

This makes barplots preferred in certain situations.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 77 / 87

Cases Were Barplots are Preferred

It is hard to see the pattern in the pie chart but the bar chart makes it
easier to compare frequencies in groups.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 78 / 87

Two categorical variables

Barplots are a very common way to visualize the frequency of different
categories, or levels, of a single categorical variable.

Another use of barplots is to visualize the joint distribution of two
categorical variables at the same time.

Let’s examine the joint distribution of outgoing domestic flights from NYC
by carrier as well as origin.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 79 / 87

Two categorical variables: Stacked barplot

ggplot(data = flights, mapping = aes(x = carrier, fill = origin)) +
geom_bar() +
theme_bw()

0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

origin

EWR

JFK

LGA

This is an example of a stacked barplot.
The fill aesthetic corresponds to the color used to fill the bars

Spring 2024 (Appalachian State University) STT 3850 : Week 2 80 / 87

Two categorical variables: Stacked barplot

ggplot(data = flights, mapping = aes(x = carrier, color = origin)) +
geom_bar() +
theme_bw()

0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

origin

EWR

JFK

LGA

The color aesthetic corresponds to the color of the outline of the bars.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 81 / 87

Two categorical variables: side-by-side barplots

While simple to make, in certain aspects it is not ideal.

For example, it is difficult to compare the heights of the different colors
between the bars, corresponding to comparing the number of flights
from each origin airport between the carriers.

An alternative to stacked barplots are side-by-side barplots, also
known as dodged barplots.

The code to create a side-by-side barplot is identical to the code to
create a stacked barplot, but with a position = "dodge" argument
added to geom_bar().

we are overriding the default barplot type, which is a stacked barplot.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 82 / 87

Two categorical variables: side-by-side barplots
ggplot(data = flights, mapping = aes(x = carrier, fill = origin)) +

geom_bar(position = "dodge") +
theme_bw()

0

10000

20000

30000

40000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

origin

EWR

JFK

LGA

Note the width of the bars for AS, F9, FL, HA and YV is different than
the others
To be the same size in terms of width as the other bars we use a more
robust position_dodge() function.

Spring 2024 (Appalachian State University) STT 3850 : Week 2 83 / 87

Two categorical variables: side-by-side barplots

ggplot(data = flights, mapping = aes(x = carrier, fill = origin)) +
geom_bar(position = position_dodge(preserve = "single")) +
theme_bw()

0

10000

20000

30000

40000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

origin

EWR

JFK

LGA

Spring 2024 (Appalachian State University) STT 3850 : Week 2 84 / 87

Two categorical variables: side-by-side barplots

Change order:
flights1 <- flights
flights1$origin1 <- factor(flights1$origin, ordered = TRUE,
levels = c("JFK", "EWR", "LGA"))

ggplot(data = flights1, mapping = aes(x = carrier, fill = origin1)) +
geom_bar(position = position_dodge(preserve = "single")) +
theme_bw()

0

10000

20000

30000

40000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

origin1

JFK

EWR

LGA

Spring 2024 (Appalachian State University) STT 3850 : Week 2 85 / 87

Two categorical variables: faceted barplot

ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar(fill = "pink") +
facet_wrap(vars(origin), ncol = 1) +
theme_bw()

LGA

JFK

EWR

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV

0

10000

20000

30000

40000

0

10000

20000

30000

40000

0

10000

20000

30000

40000

carrier

co
un

t

Spring 2024 (Appalachian State University) STT 3850 : Week 2 86 / 87

Summary table

Figure 2: Summary of Five Named Graphs

Spring 2024 (Appalachian State University) STT 3850 : Week 2 87 / 87

	Outline for the week
	Control Structures in R
	Quarto
	Data Visualization

