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other since ZR12obs = 4.7238 > Z1�↵/(k(k�1)) = 1.8339, ZR13obs = 2.0016 > Z1�↵/(k(k�1)) =
1.8339, and ZR23obs = 2.7222 > Z1�↵/(k(k�1)) = 1.8339. In this case, the probability that all
the statements are correct is 1�↵ = 0.8. Since hwfat is the accepted standard for measuring
body fat, neither of the other two methods is an acceptable substitute for measuring body
fat for high school wrestlers.

R Code 10.15 computes the multiple comparisons according to (10.20).

R Code 10.15

> alpha <- 0.2
> ZR12 <- abs(Rj[1] - Rj[2])/sqrt(b * k * (k + 1)/6)
> ZR13 <- abs(Rj[1] - Rj[3])/sqrt(b * k * (k + 1)/6)
> ZR23 <- abs(Rj[2] - Rj[3])/sqrt(b * k * (k + 1)/6)
> CV <- qnorm(1 - alpha/(k * (k - 1)))
> ZRij <- c(ZR12, ZR13, ZR23)
> names(ZRij) <- c("ZR12", "ZR13", "ZR23")
> ZRij

ZR12 ZR13 ZR23
4.723781 2.001602 2.722179

> CV

[1] 1.833915

> which(ZRij > CV)

ZR12 ZR13 ZR23
1 2 3

10.7 Goodness-of-Fit Tests

Many statistical procedures require knowledge of the population from which the sample
is taken. For example, using Student’s t-distribution for testing a hypothesis or constructing
a confidence interval for µ assumes that the parent population is normal. In this section,
goodness-of-fit (GOF) procedures are presented that will help to identify the distribution
of the population from which the sample is drawn. The null hypothesis in a goodness-of-fit
test is a statement about the form of the cumulative distribution. When all the parameters
in the null hypothesis are specified, the hypothesis is called simple. Recall that in the event
the null hypothesis does not completely specify all of the parameters of the distribution,
the hypothesis is said to be composite. Goodness-of-fit tests are typically used when the
form of the population is in question. In contrast to most of the statistical procedures
discussed so far, where the goal has been to reject the null hypothesis, in a GOF test one
hopes to retain the null hypothesis. Two general approaches, one designed primarily for
discrete distributions (chi-square goodness-of-fit) and one designed primarily for continuous
distributions (Kolmogorov-Smirnov), are presented.
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10.7.1 The Chi-Square Goodness-of-Fit Test

Given a single random sample of size n from an unknown population FX , one may
wish to test the hypothesis that FX has some known distribution F0(x) for all x. For
example, using the data frame SOCCER from Example 4.4 on page 256, is it reasonable to
assume the number of goals scored during regulation time for the 232 soccer matches has a
Poisson distribution with � = 2.5? Although the problem was previously analyzed, it will be
considered again shortly in the context of the chi-square goodness-of-fit test. The chi-square
goodness-of-fit test is based on a normalized statistic that examines the vertical deviations
between what is observed and what is expected when H0 is true in k mutually exclusive
categories. At times, such as in surveys of brand preferences, where the categories/groups
would be the brand names, the sample will lend itself to being divided into k mutually
exclusive categories. Other times, the categories/groupings will be more arbitrary. Before
applying the chi-square goodness-of-fit test, the data must be grouped according to some
scheme to form k mutually exclusive categories. When the null hypothesis completely
specifies the population, the probability that a random observation will fall into each of
the chosen or fixed categories can be computed. Once the probabilities for a data point to
fall into each of the chosen or fixed categories is computed, multiplying the probabilities
by n produces the expected counts for each category under the null distribution. If the
null hypothesis is true, the di↵erences between the counts observed in the k categories and
the counts expected in the k categories should be small. The test criterion for testing
H0 : FX(x) = F0(x) for all x against the alternative H1 : FX(x) 6= F0(x) for some x when
the null hypothesis is completely specified is

�2

obs
=

kX

i=1

(Ok � Ek)2

Ek
, (10.21)

where �2

obs
is the sum of the squared deviations between what is observed (Ok) and what

is expected (Ek) in each of the k categories divided by what is expected in each of the k
categories. Large values of �2

obs
occur when the observed data are inconsistent with the

null hypothesis and thus lead to rejection of the null hypothesis. The exact distribution
of �2

obs
is very complicated; however, for large n, provided all expected categories are at

least 5, �2

obs
is distributed approximately �2 with k � 1 degrees of freedom. When the

null hypothesis is composite, that is, not all of the parameters are specified, the degrees of
freedom for the random variable �2

obs
are reduced by one for each parameter that must be

estimated.

Example 10.12 ⇤ Soccer Goodness-of-Fit � Test the hypothesis that the number
of goals scored during regulation time for the 232 soccer matches stored in the data frame
SOCCER has a Poisson cdf with � = 2.5 with the chi-square goodness-of-fit test and an ↵
level of 0.05. Produce a histogram showing the number of observed goals scored during
regulation time and superimpose on the histogram the number of goals that are expected
to be made when the distribution of goals follows a Poisson distribution with � = 2.5.

Solution: Since the number of categories for a Poisson distribution is theoretically infinite,
a table is first constructed of the observed number of goals to get an idea of reasonable
categories.

> xtabs(~goals, data = SOCCER)

goals
0 1 2 3 4 5 6 7 8
19 49 60 47 32 18 3 3 1
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Based on the table, a decision is made to create categories for 0, 1, 2, 3, 4, 5, and 6 or more
goals. Under the null hypothesis that F0(x) is a Poisson distribution with � = 2.5, the
probabilities of scoring 0, 1, 2, 3, 4, 5, and 6 or more goals are computed with R as follows:

> PX <- c(dpois(0:5, 2.5), ppois(5, 2.5, lower = FALSE))
> PX

[1] 0.08208500 0.20521250 0.25651562 0.21376302 0.13360189 0.06680094
[7] 0.04202104

Since there were a total of n = 232 soccer games, the expected number of goals for the six
categories is simply 232⇥ PX.

> EX <- 232*PX
> OB <- c(as.vector(xtabs(~goals, data = SOCCER)[1:6]),
+ sum(xtabs(~goals, data = SOCCER)[7:9]))
> OB

[1] 19 49 60 47 32 18 7

> ans <- cbind(PX, EX, OB)
> row.names(ans) <- c(" X=0"," X=1"," X=2"," X=3"," X=4"," X=5","X>=6")
> ans

PX EX OB
X=0 0.08208500 19.043720 19
X=1 0.20521250 47.609299 49
X=2 0.25651562 59.511624 60
X=3 0.21376302 49.593020 47
X=4 0.13360189 30.995638 32
X=5 0.06680094 15.497819 18
X>=6 0.04202104 9.748881 7

Step 1: Hypotheses — The null and alternative hypotheses for using the chi-square
goodness-of-fit test to test the hypothesis that the number of goals scored dur-
ing regulation time for the 232 soccer matches stored in the data frame SOCCER has
a Poisson cdf with � = 2.5 are

H0 : FX(x) = F0(x) ⇠ Pois(� = 2.5) for all x versus

H1 : FX(x) 6= F0(x) for some x.

Step 2: Test Statistic — The test statistic chosen is �2

obs
.

Step 3: Rejection Region Calculations — Reject if �2

obs
> �2

1�↵;k�1
. The �2

obs
is

computed with (10.21) in R Code 10.16.

R Code 10.16

> chi.obs <- sum((OB - EX)^2/EX)
> chi.obs

[1] 1.39194
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1.3919 = �2

obs

?

> �2

0.95;6 = 12.5916.

Step 4: Statistical Conclusion — The }-value is 0.9663.

> p.val <- pchisq(chi.obs, 7 - 1, lower = FALSE)
> p.val

[1] 0.9663469

I. Since �2

obs
= 1.3919 is not greater than �2

0.95;6 = 12.5916, fail to reject H0.

II. Since the }-value = 0.9663 is greater than 0.05, fail to reject H0.

Fail to reject H0.

Step 5: English Conclusion — There is no evidence to suggest that the true cdf does not
equal the Poisson distribution with � = 2.5 for at least one x.

To perform a goodness-of-fit test with the function chisq.test(), one may specify a vector
of observed values for the argument x=, and a vector of probabilities of the same length as
the vector passed to x= to the argument p=.

> chisq.test(x = OB, p = PX)

Chi-squared test for given probabilities

data: OB
X-squared = 1.3919, df = 6, p-value = 0.9663

R Code 10.17 uses base graphics to create a histogram with superimposed expected goals
and the result is shown in Figure 10.11 on the next page.

R Code 10.17

> hist(SOCCER$goals, breaks = c((-0.5 + 0):(8 + 0.5)), col = "lightblue",
+ xlab = "Goals scored", ylab = "", freq = TRUE, main = "")
> x <- 0:8
> fx <- (dpois(0:8, lambda = 2.5))*232
> lines(x, fx, type = "h")
> lines(x, fx, type = "p", pch = 16)

Note that the histogram does not reflect the category � 6, but rather depicts the observed
categories of 6, 7, and 8.

Although the chi-square goodness-of-fit test is primarily designed for discrete distri-
butions, it can also be used with a continuous distribution if appropriate categories are
defined.

Example 10.13 ⇤Goodness-of-Fit for SAT Scores� Use the chi-square goodness-
of-fit test with ↵ = 0.05 to test the hypothesis that the SAT scores stored in the data frame
GRADES have a normal cdf. Use categories (�1, µ�2�], (µ�2�, µ��], (µ��, µ], (µ, µ+�],
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FIGURE 10.11: Histogram of observed goals for SOCCER with a superimposed Poisson
distribution with � = 2.5 (vertical lines)

(µ + �, µ + 2�], and (µ + 2�,1]. Produce a histogram using the categories specified and
superimpose on the histogram the expected number of SAT scores in each category when
F0(x) ⇠ N(µ = x̄,� = s).

Solution: The test follows:

Step 1: Hypotheses — The null and alternative hypotheses for using the chi-square
goodness-of-fit test to test the hypothesis that the SAT scores stored in the data
frame GRADES have a Normal cdf are

H0 : FX(x) = F0(x) ⇠ N(µ = x̄, � = s) for all x versus

H1 : FX(x) 6= F0(x) for some x.

Step 2: Test Statistic — Since the mean and standard deviation are unknown, the first
step is to estimate the unknown parameters µ and � using x̄ = 1134.65 and s =
145.6087.

> mu <- mean(GRADES$sat)
> sig <- sd(GRADES$sat)
> c(mu, sig)

[1] 1134.6500 145.6087

Because a normal distribution is continuous, it is necessary to create categories
that include all the data. The categories µ � 3� to µ � 2�, . . . , µ + 2� to µ + 3�
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are 697.824 to 843.4326, 843.4326 to 989.0413, 989.0413 to 1134.65, 1134.65 to
1280.2587, 1280.2587 to 1425.8674, and 1425.8674 to 1571.476. These particular
categories include all of the observed SAT scores; however, the probabilities actually
computed for the largest and smallest categories will be all of the area to the right
and left, respectively, of x̄ ± 2s. This is done so that the total area under the
distribution in the null hypothesis is one.

> bin <- seq(from = mu - 3*sig, to = mu + 3*sig, by = sig)
> round(bin, 0) # vector of bin cut points

[1] 698 843 989 1135 1280 1426 1571

> T1 <- table(cut(GRADES$sat, breaks = bin))
> T1 # count of observations in bins

(698,843] (843,989] (989,1.13e+03]
4 27 65

(1.13e+03,1.28e+03] (1.28e+03,1.43e+03] (1.43e+03,1.57e+03]
80 21 3

> OB <- as.vector(T1)
> OB # vector of observations

[1] 4 27 65 80 21 3

> PR <- c(pnorm(-2), pnorm(-1:2) - pnorm(-2:1),
+ pnorm(2, lower = FALSE)) # area under curve
> EX <- 200*PR # Expected count in bins
> ans <- cbind(PR, EX, OB) # column bind values in ans
> ans

PR EX OB
[1,] 0.02275013 4.550026 4
[2,] 0.13590512 27.181024 27
[3,] 0.34134475 68.268949 65
[4,] 0.34134475 68.268949 80
[5,] 0.13590512 27.181024 21
[6,] 0.02275013 4.550026 3

Step 3: Rejection Region Calculations — Reject if �2

obs
> �2

1�↵;k�p�1
.

Now that the expected and observed counts for each of the categories are computed,
the �2

obs
value can be computed according to (10.21) and is 4.1737.

> chi.obs <- sum((OB - EX)^2/EX)
> chi.obs

[1] 4.173654
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Step 4: Statistical Conclusion — In this problem, two parameters were estimated, and
as a consequence, the degrees of freedom are computed as 6�2�1 = 3. The }-value
is 0.2433.

> p.val <- pchisq(chi.obs, 6 - 2 - 1, lower = FALSE)
> p.val

[1] 0.2433129

I. Since �2

obs
= 4.1737 is not greater than �2

0.95;3 = 7.8147, fail to reject H0.

II. Since the }-value = 0.2433 is greater than 0.05, fail to reject H0.

Fail to reject H0.

Step 5: English Conclusion — There is no evidence to suggest that the true cdf of SAT
scores is not a normal distribution.

If one uses the R function chisq.test(), the degrees of freedom and the subsequent }-value
will be incorrect, as illustrated next in R Code 10.18.

R Code 10.18

> chisq.test(x = OB, p = PR) # returns incorrect dof and p-value

Chi-squared test for given probabilities

data: OB
X-squared = 4.1737, df = 5, p-value = 0.5247

Since it is not feasible to produce a histogram that extends from �1 to 1, a histogram is
created where the categories will simply cover the range of observed values. In this problem,
the range of the SAT scores is 720 to 1550. The histogram with categories (µ� 3�, µ� 2�],
(µ� 2�, µ� �], (µ� �, µ], (µ+, µ+ �], (µ+ �, µ+ 2�], and (µ+ 2�, µ+ 3�], superimposed
with the expected number of SAT scores for the categories (�1, µ � 2�], (µ � 2�, µ � �],
(µ � �, µ], (µ, µ + �], (µ + �, µ + 2�], and (µ + 2�,1] is computed in R Code 10.19 and
depicted in Figure 10.12 on the facing page.

R Code 10.19

> hist(GRADES$sat, breaks = bin, col = "lightblue", xlab = "SAT scores",
+ ylab = "", freq = TRUE, main = "")
> x <- bin[2:7] - sig/2
> fx <- PR * 200
> lines(x, fx, type = "h")
> lines(x, fx, type = "p", pch = 16)

10.7.2 Kolmogorov-Smirnov Goodness-of-Fit Test

In Section 10.7.1, the chi-square goodness-of-fit test worked by measuring the vertical
distance between what was observed in a particular category and what was expected in
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FIGURE 10.12: Histogram of SAT scores in GRADES superimposed with the expected num-
ber of SAT scores for the categories (�1, µ � 2�], (µ � 2�, µ � �], (µ � �, µ], (µ, µ + �],
(µ+ �, µ+ 2�], and (µ+ 2�,1] (vertical lines)

that same category under the null hypothesis for each of the k categories. In contrast to
the chi-square goodness-of-fit test, the Kolmogorov-Smirnov goodness-of-fit test uses all n
observations and measures vertical deviations between the cumulative distribution function
(cdf), F0(x) (where all parameters are specified), and the empirical cumulative distribution
function (ecdf), F̂n(x), for all x. For large n, the deviations between F0(x) and F̂n(x) should
be small for all values of x. The statistic Dn, called the Kolmogorov-Smirnov one-sample
statistic, is defined as

Dn = sup
x

���F̂n(x)� F0(x)
��� . (10.22)

The statistic Dn does not depend on F0(x) as long as F (x) is continuous. The deriva-
tion of the sampling distribution of Dn is beyond the scope of this text. The curious
reader can refer to Gibbons and Chakraborti (2003), page 114, for the derivation of the
sampling distribution of Dn. The statistic and sampling distribution of Dn should only be
used with simple hypotheses. When the null hypothesis is composite, the critical values
for the Kolmogorov-Smirnov test (based on the sampling distribution of Dn) are extremely
conservative. The Kolmogorov-Smirnov test can be used to assess normality provided the
distribution is completely specified. In a test of normality where the null hypothesis is not
completely specified, the statistic Dn can still be used by estimating the unknown parame-
ters of F0(x) using maximum likelihood

�
F̂0(x)

�
and substituting F̂0(x) for F0(x) in (10.22);

however, this further complicates the sampling distribution of Dn. When testing a compos-
ite normal hypothesis with unknown µ and �, the test that uses Dn = supx

��F̂n(x)� F̂0(x)
��

is called Lilliefors’s normality test (explained more fully starting on page 643). Lilliefors
used simulation to study the sampling distribution of Dn for composite hypotheses and
subsequently to publish critical values for using Dn with composite hypotheses. Simulation
will be used to show the di↵erences in the distribution of Dn for a simple null hypothesis
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versus the distribution of Dn with a composite null hypothesis.
Recall that the ecdf was defined in (3.5) to be:

F̂n(t) =
nX

i=1

I {xi  t}/n.

An equivalent expression for the ecdf is

F̂n(x) =

8
><

>:

0 x < X(1)

i
n X(i)  x  X(i+1)

1 x > X(n),

(10.23)

which will prove useful in computing Dn. When all n observations are distinct, Dn can be
computed as

Dn = max
i=1,...,n

Mi (10.24)

where

Mi = max
n��F̂n

�
X(i)

�
� F0

�
X(i)

���,
��F0

�
X(i)

�
� F̂n

�
X(i�1)

���
o
. (10.25)

Since F̂n

�
X(i)

�
= i

n and F̂n

�
X(i�1)

�
= i�1

n , (10.25) can be expressed as

Mi = max

⇢����
i

n
� F0

�
X(i)

����� = D+

i ,

����F0

�
X(i)

�
� i� 1

n

���� = D�
i

�
. (10.26)

Stated formally, the null and alternative hypotheses for the Kolmogorov-Smirnov test
for goodness-of-fit are

H0 : F (x) = F0(x) for all x versus H1 : F (x) 6= F0(x) for some x. (10.27)

The null hypothesis is rejected when Dn > Dn;1�↵ or when the test’s }-value is less than the
largest acceptable ↵ value. Since R will compute the }-value for the Kolmogorov-Smirnov
test, critical values for various n and ↵ are not presented. R uses the function ks.test(x,
y, ...), where x is a numeric vector of observations and y is either a numeric vector of
data values or a character string naming a cumulative distribution function.

Example 10.14 ⇤ Kolmogorov-Smirnov GOF Test � Test whether the observa-
tions 5, 6, 7, 8, and 9 are from a normal distribution with µ = 6.5 and � =

p
2. That is,

the hypothesized distribution is F0(x) ⇠ N
�
6.5,

p
2
�
.

Solution: Since F0(x) ⇠ N
�
6.5,

p
2
�
, it follows that

F0

�
X(i)

�
= P

�
Y  X(i)

�
= P

✓
Y � 6.5p

2


X(i) � 6.5
p
2

◆
= P

✓
Z 

X(i) � 6.5
p
2

◆
.

To compute F0

�
X(i)

�
with R, key in

> x <- 5:9
> mu <- 6.5
> sig <- sqrt(2)
> x <- sort(x)
> n <- length(x)
> FoX <- pnorm(x, mean = mu, sd = sig)
> FoX

[1] 0.1444222 0.3618368 0.6381632 0.8555778 0.9614501
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The quantities F̂n(X(i)) =
i
n , F̂n(X(i�1)) =

i�1

n , D+

i , D
�
i , and Mi are computed and stored

in the R objects FnX, Fn1X, Dp, Dm, and Mi, respectively. The Kolmogorov-Smirnov statistic
Dn = maxi=1,...,n Mi is 0.25558. The values from the R code are shown in Table 10.20.

> FnX <- seq(1:n)/n
> Fn1X <- (seq(1:n) - 1)/n
> DP <- (FnX - FoX)
> DM <- FoX - Fn1X
> Dp <- abs(DP)
> Dm <- abs(DM)
> EXP <- cbind(x, FnX, Fn1X, FoX, Dp, Dm)
> Mi <- apply(EXP[, c(5, 6)], 1, max)
> TOT <- cbind(EXP, Mi)
> TOT

x FnX Fn1X FoX Dp Dm Mi
[1,] 5 0.2 0.0 0.1444222 0.05557782 0.1444222 0.1444222
[2,] 6 0.4 0.2 0.3618368 0.03816320 0.1618368 0.1618368
[3,] 7 0.6 0.4 0.6381632 0.03816320 0.2381632 0.2381632
[4,] 8 0.8 0.6 0.8555778 0.05557782 0.2555778 0.2555778
[5,] 9 1.0 0.8 0.9614501 0.03854994 0.1614501 0.1614501

> Dn <- max(Mi)
> Dn

[1] 0.2555778

Table 10.20: Calculating Dn

i X(i)
i
n�F0

�
X(i)

�
F0

�
X(i)

�
� i�1

n D+ D� Mi

1 5 1

5
� 0.14442 0.14442 � 0 0.055578 0.14442 0.14442

2 6 2

5
� 0.36184 0.36184 � 1

5
0.038163 0.16184 0.16184

3 7 3

5
� 0.63816 0.63816 � 2

5
0.038163 0.23816 0.23816

4 8 4

5
� 0.85558 0.85558 � 3

5
0.055578 0.25558 0.25558

5 9 5

5
� 0.96145 0.96145 � 4

5
0.038550 0.16145 0.16145

Dn = 0.25558

The computation of the Komolgorov-Smirnov statistic Dn and its }-value are shown in R

Code 10.20.

R Code 10.20

> ks.test(x, y = "pnorm", mean = mu, sd = sig)

One-sample Kolmogorov-Smirnov test
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data: x
D = 0.25558, p-value = 0.8269
alternative hypothesis: two-sided

The Komolgorov-Smirnov statistic is labeled D in the output produced by ks.test(). The
value Dn = 0.2556 with a corresponding }-value of 0.8269 provides no evidence to reject
the null hypothesis that F0(x) ⇠ N

�
6.5,

p
2
�
. Figure 10.13 provides a graphical illustration

of the vertical deviations used to compute the statistic Dn for this problem.
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x

F
(x
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FIGURE 10.13: Graphical illustration of the vertical deviations used to compute the statis-
tic Dn for Example 10.14 on page 640. The solid “S”-shaped line is the hypothesized
distribution F0(x) ⇠ N

�
6.5,

p
2
�
. The vertical solid segments between the solid circles and

F0(x) represents the D+ values. The vertical dotted distance represents the D� values and
the dotted stair shaped values represent the ecdf.

In Example 10.14 on page 640, the statistic Dn = 0.2556 returned a }-value of 0.8269.
To visualize the sampling distribution of Dn and to find simulated critical values, one can
use R Code 10.21.

R Code 10.21

> ksdist <- function (n = 10, sims = 10000, alpha = 0.05){
+ Dn <- replicate(sims, ks.test(rnorm(n), pnorm)$statistic)
+ cv <- quantile(Dn, 1 - alpha)
+ plot(density(Dn), col = "blue", lwd = 2, main = "",
+ xlab = paste("Simulated critical value =", round(cv, 3),
+ "for n =", n, "when the alpha value =", alpha))
+ title(
+ main = list(expression(paste("Simulated Sampling Distribution of ",
+ D[n]))))
+ }
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The graph from running ksdist(n = 5, sims = 10000, alpha = 0.05) when using
a seed of 13 is shown in Figure 10.14. This simulation indicates a value of 0.567 or greater
would be required to reject the null hypothesis in Example 10.14 on page 640 at the ↵ = 0.05
level. The simulated }-value for the value Dn = 0.2556 in Figure 10.14 is 0.8292, very close
to the 0.8269 reported from using ks.test().
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Simulated critical value = 0.567 for n = 5 when the alpha value = 0.05

D
en
si
ty

Simulated Sampling Distribution of Dn

FIGURE 10.14: Graphical illustration of ksdist(n = 5, sims = 10000, alpha = 0.05)

Lilliefors’s Test of Normality

Expanding on the simulation for the sampling distribution for Dn, consider what hap-
pens when the null hypothesis changes from simple to composite using the code for the
function ksLdist(). Note that the Dn values stored in D_n[i] are for a simple null hy-
pothesis of normality while the Dn values stored in DnL[i] are for a composite hypothesis of
normality. The critical values reported by Lilliefors (1967) were based on simulations using
1000 or more samples using logic similar to the R Code 10.22 used to create the function
ksLdist().

R Code 10.22

> ksLdist <- function (n = 10, sims = 1000, alpha = 0.05){
+ Dn <- c()
+ DnL <- c()
+ for (i in 1:sims) {
+ x <- rnorm(n)
+ mu <- mean(x)
+ sig <- sd(x)
+ Dn[i] <- ks.test(x, pnorm)$statistic
+ DnL[i] <- ks.test(x, pnorm, mean = mu, sd = sig)$statistic
+ }
+ ys <- range(density(DnL)$y)
+ xs <- range(density(Dn)$x)
+ cv <- quantile(Dn, 1 - alpha)
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+ cvp <- quantile(DnL, 1 - alpha)
+ plot(density(Dn, bw = 0.02), col="blue", lwd=2, ylim=ys, xlim=xs,
+ main = "", , xlab="", sub = paste("Simulated critical value =",
+ round(cv, 3), "(simple hypothesis) and ", round(cvp, 3),
+ "(composite hypothesis)\n for n =", n,"when the alpha value =",
+ alpha))
+ title(
+ main = list(expression(paste("Simulated Sampling Distribution of ",
+ D[n]))))
+ lines(density(DnL, bw = 0.02), col = "red", lwd = 2, lty = 2)
+ legend(mean(xs), max(ys), legend = c("Simple Hypothesis",
+ "Composite Hypothesis"), col = c("blue", "red"), xjust = 0,
+ text.col = c("black", "black"), lty = c(1, 2), bg = "gray95",
+ cex = 1, lwd = 2)
+ box()
+ abline(h = 0)
+ }

The function ksLdist() allows the user to choose the number of samples with the
argument sims= and easily to verify the results given by Lilliefors (1967). Dallal and
Wilkinson (1986) duplicated the work by Lilliefors (1967) using much larger samples as well
as deriving an analytic approximation for the upper tail }-values for Dn = supx

��F̂n(x) �
F̂0(x)

��. For }-values less than 0.100 and sample sizes ranging from 5 to 100, the Dallal-
Wilkinson approximation is

d}-value = exp(�7.01256 ·D2

n · (n+ 2.78019)

+ 2.99587 ·Dn ·
p
n+ 2.78019� 0.122119 + 0.974598/

p
n+ 1.67997/n) (10.28)

The estimated densities from running ksLdist(sims = 10000, n =10) with a seed of 13
are shown in Figure 10.15 on the facing page, which highlights how much less variability is
present in the sampling distribution of Dn when the null hypothesis is composite. To test a
composite hypothesis of normality correctly, one should use the R function lillie.test()
available in the R package nortest. That is, one should not use the R function ks.test().

Example 10.15 ⇤ Long-Distance Phone Calls � Calculate the }-value and state
the English conclusion for testing whether the times spent on long-distance phone calls
(call.time) in the data frame PHONE have a normal distribution using the R function
lillie.test from the nortest package Verify the reported }-value using (10.28).

Solution: Note that the function nortest() labels the statistic Dn with a D. The value
nortest() computes for Dn is 0.191 with a }-value of 0.0291.

R Code 10.23

> library(nortest)
> lillie.test(PHONE$call.time)

Lilliefors (Kolmogorov-Smirnov) normality test

data: PHONE$call.time
D = 0.19102, p-value = 0.0291
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FIGURE 10.15: Estimated densities for simple and composite hypotheses from running
ksLdist(sims = 10000, n = 10)

To compute the }-value using (10.28), a small function DWA() is written in R Code 10.24.
Running the function DWA() with the arguments Dn = 0.191 and n = 23 returns an esti-
mated }-value of 0.0291.

R Code 10.24

> DWA <- function(Dn = 0.3, n = 10) {
+ p.value <- exp(-7.01256 * Dn^2 * (n + 2.78019) + 2.99587 *
+ Dn * (n + 2.78019)^0.5 - 0.122119 + 0.974598/n^0.5 +
+ 1.67997/n)
+ names(p.value) <- NULL
+ round(p.value, 4)
+ }
> DWA(Dn = 0.191, n = 23)

[1] 0.0291

With a }-value of 0.0291, the null hypothesis is rejected. There is evidence that phone call
length is not normally distributed.

10.7.3 Shapiro-Wilk Normality Test

The Shapiro-Wilk test is appropriate for testing normality. More specifically, the test
allows for a composite hypothesis of normality. That is, the parameters of the normal dis-
tribution do not need to be specified in the null hypothesis of the test (as they must be for
the Lilliefors test). Although the test is known to be conservative, it is useful for testing
normality with small samples. The test statistic measures how closely the empirical quan-
tiles of the sample follow the corresponding theoretical quantiles of a normal distribution.
This means that small values of the test statistic lead to the rejection of the null hypothesis
(that the distribution is normal).

To calculate the test statistic for a random sample of size n, x1, x2, . . . , xn, the sample
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must be sorted: x(1)  x(2)  · · ·  x(n) . The Shapiro-Wilk test statistic takes the form

W =
b2

nS2
u

, (10.29)

where S2

u is the uncorrected sample variance, b =
Pbn

2 c
i=1

an�i+1(x(n�i+1) � x(i)), and
⌅
n
2

⇧

is the integer part of n
2
. The coe�cients an�i+1 that are calculated automatically by the

function shapiro.test() are tabulated in Table 6 of Shapiro and Wilk (1965).
The critical region of the test is given by

P(W  K|H0) = ↵,

where ↵ is the significance level. The critical values K can be found in Shapiro and Wilk
(1965, Table 5), but they are not displayed in the output for shapiro.test(). The vector
of weights a0 = (a1, . . . , an), where ai = �an�i+1, is calculated as

a =
w0V�1

w0V�1V�1w
, (10.30)

where the elements of the vector w are wi = E
⇥
x(i)

⇤
and V is the covariance matrix of the

order statistics x(1), x(2), . . . , x(n).

Example 10.16 ⇤Shapiro-Wilk Normality Test� Use the Shapiro-Wilk test with
the random sample {47, 50, 57, 54, 52, 54, 53, 65, 62, 67, 69, 74, 51, 57, 57, 59} to test for nor-
mality using ↵ = 0.05.

Solution: First, order the data:

47  50  51  52  53  54 = 54  57 = 57 = 57  59  62  65  67  69  74.

Next, calculate the di↵erences x(n�i+1) � x(i) for i = 1, 2, . . . ,
⌅
n
2

⇧
= 8:

x(16) � x(1) = 74� 47 = 27 x(13) � x(4) = 65� 52 = 13 x(10) � x(7) = 57� 54 = 3
x(15) � x(2) = 69� 50 = 19 x(12) � x(5) = 62� 53 = 9 x(9) � x(8) = 57� 57 = 0
x(14) � x(3) = 67� 51 = 16 x(11) � x(6) = 59� 54 = 5

Looking at Table 6 from Shapiro and Wilk (1965) (n = 16 and i = 1, . . . , 8), one obtains

a16 = 0.5056 a14 = 0.2521 a12 = 0.1447 a10 = 0.0593
a15 = 0.3290 a13 = 0.1939 a11 = 0.1005 a9 = 0.0196

which means b =
P

8

i=1
an�i+1(x(n�i+1) � x(i)) = 28.4392 and nS2

u = 854.
The Shapiro-Wilk test statistic value is then

W =
b2

nS2
u

=
808.7881

854
= 0.9471.

The critical value K with ↵ = 0.05 and n = 16 is 0.887. As Wobs = 0.9471 > 0.887, one
fails to reject the null hypothesis of normality.
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> x <- c(47, 50, 57, 54, 52, 54, 53, 65, 62, 67, 69, 74, 51, 57, 57, 59)
> shapiro.test(x)

Shapiro-Wilk normality test

data: x
W = 0.94705, p-value = 0.4445

10.8 Categorical Data Analysis

This section provides an overview of two common scenarios where categorical data are
generated and explains how each scenario is analyzed. The basic 2 ⇥ 2 contingency table
with fixed row totals was introduced in Section 9.9.3, Testing Equality of Proportions with
Fisher’s exact test. The 2 ⇥ 2 contingency table can be generalized for I rows and J
columns and is referred to as an I ⇥ J contingency table. The sampling scheme employed
to acquire the information in the table will determine the type of hypothesis that can be
tested. Consider the following two scenarios:

SCENARIO ONE: Is there an association between gender and a person’s happiness?
To investigate whether happiness depends on gender, one might use information collected
from the General Social Survey (GSS) (http://sda.berkeley.edu/GSS). In each survey, the
GSS asks, “Taken all together, how would you say things are these days — would you say
that you are very happy, pretty happy, or not too happy?” Respondents to each survey
are coded as either male or female. The information in Table 10.21 shows how a subset of
respondents (26-year-olds) were classified with respect to the variables HAPPY and SEX.

Table 10.21: Twenty-six-year-olds’ happiness

HAPPY
SEX Very happy Pretty happy Not too happy

Male 110 277 50
Female 163 302 63

SCENARIO TWO: In a double blind randomized drug trial (neither the patient nor
the physician evaluating the patient knows the treatment, drug or placebo, the patient
receives), 400 male patients with mild dementia were randomly divided into two groups of
200. One group was given a placebo over three months while the second group received an
experimental drug for three months. At the end of the three months, the physicians (all
psychiatrists) classified the 400 patients into one of three categories: improved, no change,
or worse. The information in Table 10.22 shows how the pschiatrists classified the patients.
Are the proportions in the three status categories the same for the two treatments?
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Table 10.22: Mild dementia treatment results

Status
Treatment Improve No Change Worse

Drug 67 76 57
Placebo 48 73 79

The two scenarios illustrate two di↵erent sampling schemes that both result in I ⇥ J
contingency tables. In the first scenario, there is a single population (Americans) and
individuals are sampled from this single population and classified into one of the IJ cells
of the I ⇥ J contingency table based on the I = 2 SEX categories and the J = 3 HAPPY
categories. The format of an I⇥J contingency table when sampling from a single population
is shown in Table 10.23. The number of observations from the ith row classified into the
jth column is denoted by nij . It follows that the number of observations in the jth column
(1  j  J) is n•j = n1j + n2j + · · ·+ nIj , while the number of observations in the ith row
(1  i  I) is ni• = ni1 + ni2 + · · ·+ niJ .

The true population proportion of individuals in cell (i, j) will be denoted ⇡ij . Under
the assumption of independence between row and column variables (SEX and HAPPY

in this example), ⇡ij = ⇡i• ⇥ ⇡•j , where ⇡i• =
PJ

j=1
⇡ij and ⇡•j =

PI
i=1

⇡ij . That is,
⇡i• is the proportion of observations in the population classified in category i of the row
variable and ⇡•j is the proportion of observations in the population classified in category j
of the column variable. Since ⇡i• and ⇡•j are marginal population proportions, it follows
that ⇡̂i• = pi• = ni•

n and ⇡̂•j = p•j = n•j
n , where n is the sample size. Under the

assumption of independence the expected count for cell (i, j) is µij = n⇡ij = n⇡i•⇡•j and
µ̂ij = n⇡̂ij = n⇡̂i•⇡̂•j = nni•

n
n•j
n = ni•n•j

n .

Table 10.23: Contingency table when sampling from a single population

Col 1 Col 2 · · · Col J Totals
Row 1 n11 n12 · · · n1J n1•
Row 2 n21 n22 · · · n2J n2•
...

...
...

...
...

Row I nI1 nI2 · · · nIJ nI•
Totals n•1 n•2 · · · n•J n

In the second scenario, there are two distinct populations from which samples are taken.
The first population is the group of all patients receiving the experimental drug while the
second population is the group of all patients receiving a placebo. In this scenario, there
are I = 2 separate populations and J = 3 categories for the I = 2 populations. Individuals
sampled from the I = 2 distinct populations are classified into one of the J = 3 status
categories. This scenario has fixed row totals whereas the first scenario does not. In the
first scenario, only the total sample size, n, is fixed. That is, neither the row nor the column
totals are fixed. This is in contrast to scenario two, where the number of patients in each
treatment group (row) was fixed. The notation used for an I ⇥ J contingency table when
I samples from I distinct populations di↵ers slightly from the notation used in Table 10.23
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on the facing page with a contingency table from a single sample.
Since the sample sizes of the I distinct populations are denoted ni•, the total for all I

samples is denoted by n•• rather than the notation n used for a single sample in Table 10.23
on the preceding page. Table 10.24 shows the general form and notation used for an I ⇥ J
contingency table when sampling from I distinct populations. Each observation in each
sample is classified into one of J categories. If ni• denotes the number of observations in
the ith sample (1  i  I) and nij denotes the number of observations from the ith sample
classified into the jth category (1  j  J), it follows that the number of observations in
the jth column is n•j = n1j + n2j + · · · + nIj , while the number of observations in the ith

row is ni• = ni1 + ni2 + · · ·+ niJ .

Table 10.24: General form and notation used for an I⇥J contingency table when sampling
from I distinct populations

Category 1 Category 2 · · · Category J Totals

Population 1 n11 n12 · · · n1J n1•

Population 2 n21 n22 · · · n2J n2•
...

...
...

...
...

Population I nI1 nI2 . . . nIJ nI•

Totals n•1 n•2 . . . n•J n••

10.8.1 Test of Independence

Scenario one asks if there is an association between gender and a person’s happiness.
In Section 3.3.6 on page 211, two events, A and B, were defined as independent when
P(A \ B) = P(A) ⇥ P(B) or, equivalently, when P(A|B) = P(A). If, instead of having a
random sample from a single population, an I ⇥ J contingency table consisted of entries
from the population, association could be mathematically verified by showing that P(nij) 6=
P(ni•)⇥P(n•j) for some i and j. If by chance P(nij) = P(ni•)⇥P(n•j) for all i and j, then
one would conclude there is no association between gender and a person’s happiness. That
is, the variables gender and happiness would be considered mathematically independent.
Since the entire population is not given but rather a sample from a population, the values
in the I ⇥ J contingency table can be expected to change from sample to sample. The
question is, “By how much can the variables deviate from the mathematical definition of
independence and still be considered statistically independent?”

The null and alternative hypotheses to test for independence between row and column
variables is written H0 : ⇡ij = ⇡i•⇡•j versus H1 : ⇡ij 6= ⇡i•⇡•j . The test statistic is

�2

obs
=

IX

i=1

JX

j=1

(Oij � Eij)2

Eij
. (10.31)

It compares the observed frequencies in the table with the expected frequencies when H0

is true. Under the assumption of independence, and when the observations in the cells

are su�ciently large (usually greater than 5), �2

obs
=

PI
i=1

PJ
j=1

(nij�µ̂ij)
2

µ̂ij

q⇠ �2

(I�1)(J�1)
,

where µ̂ij = ni•n•j
n = Eij and nij = Oij . The null hypothesis of independence is rejected
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when �2

obs
> �2

1�↵;(I�1)(J�1)
.

The chi-squared approximation is generally satisfactory if the Eijs (µ̂ijs) in the test
statistic are not too small. Various rules of thumb exist for what might be considered
too small. A very conservative rule is to require all Eijs to be 5 or more. This can
be accomplished by combining cells with small Eijs and reducing the overall degrees of
freedom. At times, it may be permissible to let the Eij of a cell be as low as 0.5.

Test for SCENARIO ONE:

Step 1: Hypotheses — H0 : ⇡ij = ⇡i•⇡•j (Row and column variables are independent.)
versus H1 : ⇡ij 6= ⇡i•⇡•j for at least one i, j (Row and column variables are depen-
dent.)

Step 2: Test Statistic — The test statistic is

�2

obs
=

IX

i=1

JX

j=1

(Oij � Eij)2

Eij

q⇠ �2

(I�1)(J�1)
= �2

(2�1)(3�1)
= �2

2

under the assumption of independence. The �2

obs
value is 4.3215.

Step 3: Rejection Region Calculations — The rejection region is

�2

obs
> �2

1�↵;(I�1)(J�1)
= �2

0.95;2 = 5.9915.

Before the statistic �2

obs
=

PI
i=1

PJ
j=1

(Oij�Eij)
2

Eij
can be computed, the expected

counts for each of the ij cells must be calculated. Note that Oij = nij and Eij =
ni•n•j

n .

> HA <- c(110, 277, 50, 163, 302, 63)
> HAT <- matrix(data = HA, nrow = 2, byrow = TRUE)
> dimnames(HAT) <- list(SEX = c("Male", "Female"),
+ Category = c("Very Happy", "Pretty Happy", "Not To Happy"))
> HAT

Category
SEX Very Happy Pretty Happy Not To Happy
Male 110 277 50
Female 163 302 63

> E <- outer(rowSums(HAT), colSums(HAT), "*")/sum(HAT)
> E

Very Happy Pretty Happy Not To Happy
Male 123.628 262.2 51.17202
Female 149.372 316.8 61.82798

> # OR
> chisq.test(HAT)$expected

Category
SEX Very Happy Pretty Happy Not To Happy
Male 123.628 262.2 51.17202
Female 149.372 316.8 61.82798
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�2

obs
=

(110� 123.6280)2

123.6280
+

(277� 262.2)2

262.2
+ · · ·+ (63� 61.828)2

61.828
= 4.3215.

The value of the test statistic is �2

obs = 4.3215. This can be done with code by
entering

> chi.obs <- sum((HAT - E)^2/E)
> chi.obs

[1] 4.321482

4.3215 = �2

obs

?

> �2

0.95,2 = 5.9915.

Step 4: Statistical Conclusion — The }-value is 0.1152.

> p.val <- pchisq(chi.obs, 2, lower = FALSE)
> p.val

[1] 0.1152397

I. From the rejection region, since �2

obs
= 4.3215 < �2

0.95;2 = 5.9915, fail to reject
the null hypothesis of independence.

II. Since the }-value = 0.1152 is greater than 0.05, fail to reject the null hypoth-
esis of independence.

Fail to reject H0.

Step 5: English Conclusion — There is not su�cient evidence to suggest the variables
gender and happiness are statistically dependent.

The function chisq.test() can also be used to test the null hypothesis of independence.

> chisq.test(HAT)

Pearson's Chi-squared test

data: HAT
X-squared = 4.3215, df = 2, p-value = 0.1152

10.8.2 Test of Homogeneity

The question of interest in scenario two is whether the proportions in each of the j = 3
categories for the i = 2 populations are equivalent. Specifically, is ⇡1j = ⇡2j for all j? This
question is answered with a test of homogeneity. In general, the null hypothesis for a test
of homogeneity with i = I populations is written

H0 : ⇡1j = ⇡2j = · · · = ⇡Ij for all j versus H1 : ⇡ij 6= ⇡i+1,j for some (i, j). (10.32)
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Expressed in words, the null hypothesis is that the I populations are homogeneous with
respect to the J categories versus the I populations are not homogeneous with respect to
the J categories. An equivalent interpretation is that for each population i = 1, 2, . . . , I, the
proportion of people in the jth category is the same. When H0 is true, ⇡1j = ⇡2j = · · · = ⇡Ij

for all j. Under the null hypothesis, µij = ni•⇡ij , ⇡̂ij = pij =
n•j
n••

, and µ̂ij =
ni•n•j
n••

= Eij .

When H0 is true, all the probabilities in the jth column are equal, and a pooled estimate of
⇡ij is obtained by adding all the frequencies in the jth column (n•j) and dividing the total
by n••. The statistic used in this type of problem has the same form as the one used for
the test of independence in (10.31). Substituting the homogeneity expressions for Oij and
Eij , the statistic is expressed as

�2

obs
=

IX

i=1

JX

j=1

(nij � ni•n•j/n••)2

ni•n•j/n••

q⇠ �2

(I�1)(J�1)
.

The null hypothesis of homogeneity is rejected when �2

obs
> �2

1�↵;(I�1)(J�1)
.

When row and column totals are not fixed, the numbers in the i, j cells can be used to
estimate their corresponding population proportions without assuming the null hypothesis
is true. With fixed row or column totals, this estimation cannot be accomplished. That is,
⇡̂ij = pij 6= nij

n••
when H0 is false.

Test for SCENARIO TWO:

Step 1: Hypotheses — H0 : ⇡1j = ⇡2j for all j versus H1 : ⇡i, j 6= ⇡i+1, j for some (i, j).
That is, all the probabilities in the same column are equal to each other versus at
least two of the probabilities in the same column are not equal to each other.

Step 2: Test Statistic — The test statistic is

�2

obs
=

IX

i=1

JX

j=1

(Oij � Eij)2

Eij
⇠ �2

(I�1)(J�1)
= �2

(2�1)(3�1)
= �2

2

under the null hypothesis. The �2

obs
value is 6.7584.

Step 3: Rejection Region Calculations — The rejection region is

�2

obs
> �2

1�↵;(I�1)·(J�1)
= �2

0.95;2 = 5.9915.

Before the statistic �2

obs
=

PI
i=1

PJ
j=1

(Oij�Eij)
2

Eij
can be computed, the expected

counts for each of the ij cells must be determined. Recall that Oij = nij and
Eij =

ni•n•j
n••

.

> DT <- c(67, 76, 57, 48, 73, 79)
> DTT <- matrix(data = DT, nrow = 2, byrow = TRUE)
> dimnames(DTT) <- list(Treatment = c("Drug", "Placebo"),
+ Category = c("Improve", "No Change", "Worse"))
> DTT

Category
Treatment Improve No Change Worse
Drug 67 76 57
Placebo 48 73 79
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> E <- chisq.test(DTT)$expected
> E

Category
Treatment Improve No Change Worse
Drug 57.5 74.5 68
Placebo 57.5 74.5 68

�2

obs
=

(67� 57.5)2

57.5
+

(76� 74.5)2

74.5
+ · · ·+ (79� 68)2

68
= 6.7584.

The value of the test statistic is �2

obs = 6.7584. This can be done with code by
entering

> chi.obs <- sum((DTT - E)^2/E)
> chi.obs

[1] 6.758357

6.7584 = �2

obs

?

> �2

.95,2 = 5.9915.

Step 4: Statistical Conclusion — The }-value is 0.03408.

> p.val <- pchisq(chi.obs, 2, lower = FALSE)
> p.val

[1] 0.03407544

I. From the rejection region, since �2

obs
= 6.7584 > �0.95;2 = 5.9915, reject the

null hypothesis of homogeneity.

II. Since the }-value = 0.0341 is less than 0.05, reject the null hypothesis of
homogeneity.

Reject H0.

Step 5: English Conclusion — There is su�cient evidence to suggest that not all of the
probabilities for the i = 2 populations with respect to each of the J categories are
equal.

Using chisq.test() directly produces the same results.

> chisq.test(DTT)

Pearson's Chi-squared test

data: DTT
X-squared = 6.7584, df = 2, p-value = 0.03408
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