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Qualitative Predictors

The simplest situation where dummy variables might be used in a regression model is when
the qualitative predictor has only two levels. The regression model for a single quantitative
predictor (𝑥1) and a dummy variable (𝐷1) is written

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝐷1 + 𝛽3𝑥1𝐷1 + 𝜀 (1)

where

𝐷1 = {0 for the first level
1 for the second level.

The model above when 𝐷1 has two levels will yield one of four possible scenarios, as shown in
Figure 1. This type of model requires the user to answer three basic questions:

• Are the lines the same?
• Are the slopes the same?
• Are the intercepts the same?

To address whether the lines are the same, the null hypothesis 𝐻0 ∶ 𝛽2 = 𝛽3 = 0 must be
tested. One way to perform the test is to use the general linear test statistic based on the
full model and the reduced model 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝜀. If the null hypothesis is not rejected,
the interpretation is that there is one line present (the intercept and the slope are the same
for both levels of the dummy variable). This is the case for graph I of Figure 1. If the null
hypothesis is rejected, either the slopes, the intercepts, or possibly both the slope and the
intercept are different for the different levels of the dummy variable, as seen in graphs II, III,
and IV of Figure 1, respectively.
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Figure 1: Four possible results for a single dummy variable with two levels. Graph I has the
intercept and the slope the same for both levels of the dummy variable. Graph II
has the two lines with the same slope, but different intercepts. Graph III shows the
two fitted lines with the same intercept but different slopes. Graph IV shows the
two lines with different intercepts and different slopes.
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To answer whether the slopes are the same, the null hypothesis 𝐻0 ∶ 𝛽3 = 0 must be tested. If
the null hypothesis is not rejected, the two lines have the same slope, but different intercepts,
as shown in graph II of Figure 1. The two parallel lines that result when 𝛽3 = 0 are

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝜀 for (𝐷1 = 0) and 𝑌 = (𝛽0 + 𝛽2) + 𝛽1𝑥1 + 𝜀 for (𝐷1 = 1).

When 𝐻0 ∶ 𝛽3 = 0 is rejected, one concludes that the two fitted lines are not parallel as in
graphs III and IV of Figure 1.

To answer whether the intercepts are the same, the null hypothesis 𝐻0 ∶ 𝛽2 = 0 for the full
model must be tested. The reduced model for this test is 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽3𝑥1𝐷1 + 𝜀. If
the null hypothesis is not rejected, the two fitted lines have the same intercept but different
slopes:

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝜀 for (𝐷1 = 0) and 𝑌 = 𝛽0 + (𝛽1 + 𝛽3)𝑥1 + 𝜀 for (𝐷1 = 1).

Graph III of Figure 1 represents this situation. If the null hypothesis is rejected, one concludes
that the two lines have different intercepts, as in graphs II and IV of Figure 1.

Example

Suppose a realtor wants to model the appraised price of an apartment as a function of the
predictors living area (in m2) and the presence or absence of elevators. Consider the data
frameVIT2005, which contains data about apartments in Vitoria, Spain, including totalprice,
area, and elevator, which are the appraised apartment value in Euros, living space in square
meters, and the absence or presence of at least one elevator in the building, respectively. The
realtor first wants to know if there is any relationship between appraised price (𝑌 ) and living
area (𝑥1). Next, the realtor wants to know how adding a dummy variable for whether or not
an elevator is present changes the relationship: Are the lines the same? Are the slopes the
same? Are the intercepts the same?

Solution (is there a realationship between totalprice and area?):
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R Code

library(tidyverse)
library(PASWR2)
VIT2005 <- VIT2005 %>%
mutate(elevator = factor(elevator, labels = c("No", "Yes")))

mod_simple <- lm(totalprice ~ area, data = VIT2005)
summary(mod_simple)

Call:
lm(formula = totalprice ~ area, data = VIT2005)

Residuals:
Min 1Q Median 3Q Max

-156126 -21564 -2155 19493 120674

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 40822.4 12170.1 3.354 0.00094 ***
area 2704.8 133.6 20.243 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 40810 on 216 degrees of freedom
Multiple R-squared: 0.6548, Adjusted R-squared: 0.6532
F-statistic: 409.8 on 1 and 216 DF, p-value: < 2.2e-16

library(moderndive)
get_regression_table(mod_simple)

# A tibble: 2 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 intercept 40822. 12170. 3.35 0.001 16835. 64810.
2 area 2705. 134. 20.2 0 2441. 2968.

ggplot(data = VIT2005, aes(x = area, y = totalprice)) +
geom_point() +
theme_bw() +
geom_smooth(method = "lm", se = FALSE)
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Figure 2: Scatterplot of totalprice versus area with the fitted regression line superim-
posed from mod_simple

A linear regression model of the form

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝜀 (2)

is fit yielding

𝑌𝑖 = 4.0822416 × 104 + 2704.7510279𝑥𝑖1

and a scatterplot of totalprice versus area with the fitted regression line superimposed over
the scatterplot is shown in Figure 2.

Based on Figure 2, there appears to be a linear relationship between appraised price and living
area. Further, this relationship is statistically significant, as the p-value for testing 𝐻0 ∶ 𝛽1 = 0
versus 𝐻1 ∶ 𝛽1 ≠ 0 is less than 2 × 10−16.
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Solution (does adding a dummy variable (elevator) change the relationship?):

The regression model including the dummy variable for elevator is written

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝐷1 + 𝛽3𝑥1𝐷1 + 𝜀 (3)

where

𝐷1 = {0 when a building has no elevators
1 when a building has at least one elevator.

To determine if the lines are the same (which means that the linear relationship between
appraised price and living area is the same for apartments with and without elevators), the
hypotheses are

𝐻0 ∶ 𝛽2 = 𝛽3 = 0 versus 𝐻1 ∶ at least one 𝛽𝑖 ≠ 0 for 𝑖 = 2, 3.

R Code

mod_full <- lm(totalprice ~ area + elevator + area:elevator, data = VIT2005)
anova(mod_simple, mod_full) # compare models

Analysis of Variance Table

Model 1: totalprice ~ area
Model 2: totalprice ~ area + elevator + area:elevator
Res.Df RSS Df Sum of Sq F Pr(>F)

1 216 3.5970e+11
2 214 3.0267e+11 2 5.704e+10 20.165 9.478e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this problem, one may conclude that at least one of 𝛽2 and 𝛽3 is not zero since the p-value
= 9.4780144 × 10−9. In other words, the lines have either different intercepts, different slopes,
or different intercepts and slopes.

To see if the lines have the same slopes (which means that the presence of an elevator adds
constant value over all possible living areas), the hypotheses are

𝐻0 ∶ 𝛽3 = 0 versus 𝐻1 ∶ 𝛽3 ≠ 0.
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R Code

anova(mod_full)

Analysis of Variance Table

Response: totalprice
Df Sum Sq Mean Sq F value Pr(>F)

area 1 6.8239e+11 6.8239e+11 482.4846 < 2.2e-16 ***
elevator 1 4.5308e+10 4.5308e+10 32.0352 4.83e-08 ***
area:elevator 1 1.1732e+10 1.1732e+10 8.2949 0.00438 **
Residuals 214 3.0267e+11 1.4143e+09
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the p-value = 0.0043797, it may be concluded that 𝛽3 ≠ 0, which implies that the
lines are not parallel.

To test for equal intercepts (which means that appraised price with and without elevators
starts at the same value), the hypotheses to be evaluated are

𝐻0 ∶ 𝛽2 = 0 versus 𝐻1 ∶ 𝛽2 ≠ 0.

R Code

mod_full <- lm(totalprice ~ area + elevator + area:elevator, data = VIT2005)
mod_inter <- lm(totalprice ~ area + area:elevator, data = VIT2005)
anova(mod_inter, mod_full) # compare models

Analysis of Variance Table

Model 1: totalprice ~ area + area:elevator
Model 2: totalprice ~ area + elevator + area:elevator
Res.Df RSS Df Sum of Sq F Pr(>F)

1 215 3.0624e+11
2 214 3.0267e+11 1 3576497188 2.5288 0.1133

Since the p-value for testing the null hypothesis is 0.1132635, one fails to reject 𝐻0 and should
conclude that the two lines have the same intercept but different slopes.
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R Code

summary(mod_inter)

Call:
lm(formula = totalprice ~ area + area:elevator, data = VIT2005)

Residuals:
Min 1Q Median 3Q Max

-125093 -21762 -2201 18117 112252

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 71352.08 12309.18 5.797 2.39e-08 ***
area 1897.94 180.59 10.510 < 2e-16 ***
area:elevatorYes 553.99 90.42 6.127 4.23e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 37740 on 215 degrees of freedom
Multiple R-squared: 0.7061, Adjusted R-squared: 0.7034
F-statistic: 258.3 on 2 and 215 DF, p-value: < 2.2e-16

coef(mod_inter)

(Intercept) area area:elevatorYes
71352.0844 1897.9368 553.9856

b0 <- coef(mod_inter)[1]
b1NO <- coef(mod_inter)[2]
b1YES <- coef(mod_inter)[2] + coef(mod_inter)[3]
c(b0, b1NO, b1YES)

(Intercept) area area
71352.084 1897.937 2451.922

The fitted model is 𝑌𝑖 = 7.1352084 × 104 + 1897.9368262𝑥𝑖1 + 553.9856453𝑥𝑖1𝐷𝑖1, and the
fitted regression lines for the two values of 𝐷1 are shown in Figure 3. The fitted model using
the same intercept with different slopes has an 𝑅2

𝑎 of 0.7033949, a modest improvement over
the model without the variable elevator, which had an 𝑅2

𝑎 value of 0.6532269.
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ggplot(data = VIT2005, aes(x = area, y = totalprice, color = elevator)) +
geom_point(alpha = 0.5) +
theme_bw() +
geom_abline(intercept = b0, slope = b1NO, color = "red") +
geom_abline(intercept = b0, slope = b1YES, color = "blue") +
scale_color_manual(values = c("red", "blue")) +
xlim(10, 200) +
ylim(50000, 500000) +
labs(x = "Living Area is Square Meters",

y = "Appraised Price in Euros")
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Figure 3: Fitted regression lines for mod_inter
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Diagnostics

R Code

MDF <- get_regression_points(mod_inter)
ggplot(data = MDF, aes(x = totalprice_hat, y = residual)) +
geom_point() +
theme_bw() +
labs(title = "Residuals versus Fitted Values") +
geom_hline(yintercept = 0, lty = "dashed")
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Residuals versus Fitted Values

ggplot(data = MDF, aes(x = residual)) +
geom_histogram(fill = "lightblue", color = "blue") +
theme_bw()
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ggplot(data = MDF, aes(sample = residual)) +
geom_qq() +
geom_qq_line() +
theme_bw()
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Example

Consider the MA_schools data frame from the moderndive package which contains 2017 data
on Massachusetts public high schools provided by the Massachusetts Department of Education.
Consider a model with SAT math scores (average_sat_math) modeled as a function of percent-
age of the high school’s student body that are economically disadvantaged (perc_disadvan)
and the a categorical variable measuring school size (size).

Solution (is there a relationship between average_sat_math and
perc_disadvan?):
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R Code

ggplot(data = MA_schools,
aes(x = perc_disadvan, y = average_sat_math)) +

geom_point() +
theme_bw() +
geom_smooth(method = "lm", se = FALSE)
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mod_simple <- lm(average_sat_math ~ perc_disadvan,
data = MA_schools)

summary(mod_simple)

Call:
lm(formula = average_sat_math ~ perc_disadvan, data = MA_schools)

Residuals:
Min 1Q Median 3Q Max

-80.74 -21.26 -4.12 18.54 174.17

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 581.2811 3.2668 177.9 <2e-16 ***
perc_disadvan -2.7798 0.1011 -27.5 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 33.54 on 330 degrees of freedom
Multiple R-squared: 0.6962, Adjusted R-squared: 0.6953
F-statistic: 756.2 on 1 and 330 DF, p-value: < 2.2e-16

get_regression_table(mod_simple)

# A tibble: 2 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 intercept 581. 3.27 178. 0 575. 588.
2 perc_disadvan -2.78 0.101 -27.5 0 -2.98 -2.58

You complete the rest….

Solution (does adding a dummy variable size change the relationship?):

R Code

ggplot(data = MA_schools,
aes(x = perc_disadvan, y = average_sat_math, color = size)) +

geom_point() +
theme_bw() +
geom_smooth(method = "lm", se = FALSE) -> p1

ggplot(data = MA_schools,
aes(x = perc_disadvan, y = average_sat_math, color = size)) +

geom_point() +
theme_bw() +
geom_parallel_slopes(se = FALSE) -> p2

library(patchwork)
p1 + p2
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mod_full <- lm(lm(average_sat_math ~ perc_disadvan + size + perc_disadvan:size, data = MA_schools))
anova(mod_simple, mod_full)

Analysis of Variance Table

Model 1: average_sat_math ~ perc_disadvan
Model 2: average_sat_math ~ perc_disadvan + size + perc_disadvan:size
Res.Df RSS Df Sum of Sq F Pr(>F)

1 330 371191
2 326 367669 4 3521.5 0.7806 0.5384

anova(mod_full)

Analysis of Variance Table

Response: average_sat_math
Df Sum Sq Mean Sq F value Pr(>F)

perc_disadvan 1 850615 850615 754.2112 <2e-16 ***
size 2 3133 1566 1.3888 0.2508
perc_disadvan:size 2 389 194 0.1724 0.8417
Residuals 326 367669 1128
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Simpson’s Paradox

R Code

library(ISLR)
credit_paradox <- Credit %>%
select(ID, debt = Balance, credit_limit = Limit,

credit_rating = Rating, income = Income, age = Age)
ggplot(data = credit_paradox, aes(x = credit_limit, y = debt)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_bw() -> p1

ggplot(data = credit_paradox, aes(x = income, y = debt)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_bw() -> p2

library(patchwork)
p1 + p2
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library(plotly)
p <- plot_ly(data = credit_paradox, z = ~debt, x = ~credit_limit, y = ~income) %>%
add_markers()

p
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mod <- lm(debt ~ credit_limit + income, data = credit_paradox)
summary(mod)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -385.1792604 19.464801525 -19.78850 3.878764e-61
credit_limit 0.2643216 0.005879729 44.95471 7.717386e-158
income -7.6633230 0.385072058 -19.90101 1.260933e-61

x <- seq(min(credit_paradox$credit_limit), max(credit_paradox$credit_limit), length = 70)
y <- seq(min(credit_paradox$income), max(credit_paradox$income), length = 70)
plane <- outer(x, y, function(a, b){coef(mod)[1] + coef(mod)[2]*a + coef(mod)[3]*b})
# draw the plane
p %>%
add_surface(x = ~x, y = ~y, z = ~plane)
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qs <- quantile(credit_paradox$credit_limit, probs = seq(0, 1, .25))
# credit_paradox$credit_cats <- cut(credit_paradox$credit_limit, breaks = qs, include.lowest = TRUE)
############### Or above
credit_paradox <- credit_paradox %>%
mutate(credit_cats = cut(credit_limit, breaks = qs, include.lowest = TRUE))

head(credit_paradox)

ID debt credit_limit credit_rating income age credit_cats
1 1 333 3606 283 14.891 34 (3.09e+03,4.62e+03]
2 2 903 6645 483 106.025 82 (5.87e+03,1.39e+04]
3 3 580 7075 514 104.593 71 (5.87e+03,1.39e+04]
4 4 964 9504 681 148.924 36 (5.87e+03,1.39e+04]
5 5 331 4897 357 55.882 68 (4.62e+03,5.87e+03]
6 6 1151 8047 569 80.180 77 (5.87e+03,1.39e+04]

ggplot(data = credit_paradox, aes(x = credit_limit)) +
geom_density(fill = "pink", color = "black") +
geom_vline(xintercept = qs, color = "blue") +
theme_bw()
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credit_paradox %>%
group_by(credit_cats) %>%
summarize(n())

# A tibble: 4 x 2
credit_cats `n()`
<fct> <int>

1 [855,3.09e+03] 100
2 (3.09e+03,4.62e+03] 100
3 (4.62e+03,5.87e+03] 100
4 (5.87e+03,1.39e+04] 100

p1 <- ggplot(data = credit_paradox, aes(x = income, y = debt)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_bw() +
labs(y = "Credit card debt (in $)",

x = "Income (in $1000)")
p2 <- ggplot(data = credit_paradox, aes(x = income, y = debt, color = credit_cats)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_bw() +
labs(y = "Credit card debt (in $)",

x = "Income (in $1000)",
color = "Credit limit bracket")
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Figure 4: Relationship between credit card debt and income by credit limit bracket
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