Data for Exercise 9.34

Windmill

Format

A data frame/tibble with 25 observations on two variables

velocity

wind velocity (miles per hour)

output

power generated (DC volts)

Source

Joglekar, et al. (1989), Lack of Fit Testing when Replicates Are Not Available, The American Statistician, 43,(3), 135-143.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples


summary(lm(output ~ velocity, data = Windmill))
#> 
#> Call:
#> lm(formula = output ~ velocity, data = Windmill)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -0.59869 -0.14099  0.06059  0.17262  0.32184 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  0.13088    0.12599   1.039     0.31    
#> velocity     0.24115    0.01905  12.659 7.55e-12 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.2361 on 23 degrees of freedom
#> Multiple R-squared:  0.8745,	Adjusted R-squared:  0.869 
#> F-statistic: 160.3 on 1 and 23 DF,  p-value: 7.546e-12
#> 
anova(lm(output ~ velocity, data = Windmill))
#> Analysis of Variance Table
#> 
#> Response: output
#>           Df Sum Sq Mean Sq F value    Pr(>F)    
#> velocity   1 8.9296  8.9296  160.26 7.546e-12 ***
#> Residuals 23 1.2816  0.0557                      
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1