Data for Exercise 9.20

Shuttle

Format

A data frame/tibble with 15 observations on two variables

users

number of shuttle riders

autos

number of automobiles in the downtown area

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples


plot(autos ~ users, data = Shuttle)

model <- lm(autos ~ users, data = Shuttle)
summary(model)
#> 
#> Call:
#> lm(formula = autos ~ users, data = Shuttle)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -195.035  -41.056   -0.979   82.357  149.287 
#> 
#> Coefficients:
#>               Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) 2837.23046   55.59622   51.03 2.30e-16 ***
#> users         -1.15105    0.06872  -16.75 3.52e-10 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 109.5 on 13 degrees of freedom
#> Multiple R-squared:  0.9557,	Adjusted R-squared:  0.9523 
#> F-statistic: 280.5 on 1 and 13 DF,  p-value: 3.515e-10
#> 
rm(model)