R/BSDA-package.R
Shoplift.Rd
Data for Exercise 9.58
Shoplift
A data frame/tibble with eight observations on two variables
sales (in 1000 dollars)
loss (in 100 dollars)
Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.
plot(loss ~ sales, data = Shoplift)
model <- lm(loss ~ sales, data = Shoplift)
summary(model)
#>
#> Call:
#> lm(formula = loss ~ sales, data = Shoplift)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.6829 -1.2232 -0.7567 1.3339 4.0696
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6.1050 4.0496 1.508 0.1824
#> sales 1.0350 0.4513 2.293 0.0617 .
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 2.316 on 6 degrees of freedom
#> Multiple R-squared: 0.4671, Adjusted R-squared: 0.3783
#> F-statistic: 5.259 on 1 and 6 DF, p-value: 0.06167
#>
rm(model)