Data for Exercises 2.28, 9.19, and Example 2.8

Name

Format

A data frame/tibble with 42 observations on three variables

brand

a factor with levels Band-Aid, Barbie, Birds Eye, Budweiser, Camel, Campbell, Carlsberg, Coca-Cola, Colgate, Del Monte, Fisher-Price, Gordon's, Green Giant, Guinness, Haagen-Dazs, Heineken, Heinz, Hennessy, Hermes, Hershey, Ivory, Jell-o, Johnnie Walker, Kellogg, Kleenex, Kraft, Louis Vuitton, Marlboro, Nescafe, Nestle, Nivea, Oil of Olay, Pampers, Pepsi-Cola, Planters, Quaker, Sara Lee, Schweppes, Smirnoff, Tampax, Winston, and Wrigley's

value

value in billions of dollars

revenue

revenue in billions of dollars

Source

Financial World.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples


plot(value ~ revenue, data = Name)
model <- lm(value ~ revenue, data = Name)
abline(model, col = "red")

cor(Name$value, Name$revenue)
#> [1] 0.9403903
summary(model)
#> 
#> Call:
#> lm(formula = value ~ revenue, data = Name)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -7.5574 -0.3404  0.2231  0.6834  8.2840 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  -0.8889     0.4174   -2.13   0.0394 *  
#> revenue       2.0244     0.1158   17.49   <2e-16 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 2.096 on 40 degrees of freedom
#> Multiple R-squared:  0.8843,	Adjusted R-squared:  0.8814 
#> F-statistic: 305.8 on 1 and 40 DF,  p-value: < 2.2e-16
#> 
rm(model)