Data for Exercises 2.28, 9.19, and Example 2.8
NameA data frame/tibble with 42 observations on three variables
a factor with levels Band-Aid,
Barbie, Birds Eye, Budweiser, Camel, Campbell,
Carlsberg, Coca-Cola, Colgate, Del Monte,
Fisher-Price, Gordon's, Green Giant, Guinness,
Haagen-Dazs, Heineken, Heinz, Hennessy,
Hermes, Hershey, Ivory, Jell-o, Johnnie
Walker, Kellogg, Kleenex, Kraft, Louis Vuitton,
Marlboro, Nescafe, Nestle, Nivea, Oil of Olay,
Pampers, Pepsi-Cola, Planters, Quaker, Sara
Lee, Schweppes, Smirnoff, Tampax, Winston, and
Wrigley's
value in billions of dollars
revenue in billions of dollars
Financial World.
Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.
plot(value ~ revenue, data = Name)
model <- lm(value ~ revenue, data = Name)
abline(model, col = "red")
cor(Name$value, Name$revenue)
#> [1] 0.9403903
summary(model)
#>
#> Call:
#> lm(formula = value ~ revenue, data = Name)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -7.5574 -0.3404 0.2231 0.6834 8.2840
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.8889 0.4174 -2.13 0.0394 *
#> revenue 2.0244 0.1158 17.49 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 2.096 on 40 degrees of freedom
#> Multiple R-squared: 0.8843, Adjusted R-squared: 0.8814
#> F-statistic: 305.8 on 1 and 40 DF, p-value: < 2.2e-16
#>
rm(model)