Data for Exercise 9.24, Example 9.1, and Example 9.6
Mathpro
A data frame/tibble with 51 observations on four variables
a factor with levels
Conn
,
D.C.
, Del
, Ga
, Hawaii
, Ind
, Maine
,
Mass
, Md
, N.C.
, N.H.
, N.J.
, N.Y.
,
Ore
, Pa
, R.I.
, S.C.
, Va
, and Vt
SAT math scores for high school seniors
math proficiency scores for eigth graders
a numeric vector
National Assessment of Educational Progress and The College Board.
Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.
model <- lm(sat_math ~ profic, data = Mathpro)
plot(sat_math ~ profic, data = Mathpro, ylab = "SAT", xlab = "proficiency")
abline(model, col = "red")
summary(model)
#>
#> Call:
#> lm(formula = sat_math ~ profic, data = Mathpro)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -49.06 -27.15 -10.21 35.58 55.44
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 462.6561 16.2059 28.549 <2e-16 ***
#> profic 2.2043 0.9117 2.418 0.0213 *
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 34.06 on 33 degrees of freedom
#> (16 observations deleted due to missingness)
#> Multiple R-squared: 0.1505, Adjusted R-squared: 0.1248
#> F-statistic: 5.846 on 1 and 33 DF, p-value: 0.02129
#>
rm(model)