Data for Exercise 9.24, Example 9.1, and Example 9.6

Mathpro

Format

A data frame/tibble with 51 observations on four variables

state

a factor with levels Conn, D.C., Del, Ga, Hawaii, Ind, Maine, Mass, Md, N.C., N.H., N.J., N.Y., Ore, Pa, R.I., S.C., Va, and Vt

sat_math

SAT math scores for high school seniors

profic

math proficiency scores for eigth graders

group

a numeric vector

Source

National Assessment of Educational Progress and The College Board.

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples


model <- lm(sat_math ~ profic, data = Mathpro)
plot(sat_math ~ profic, data = Mathpro, ylab = "SAT", xlab = "proficiency")
abline(model, col = "red")

summary(model)
#> 
#> Call:
#> lm(formula = sat_math ~ profic, data = Mathpro)
#> 
#> Residuals:
#>    Min     1Q Median     3Q    Max 
#> -49.06 -27.15 -10.21  35.58  55.44 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) 462.6561    16.2059  28.549   <2e-16 ***
#> profic        2.2043     0.9117   2.418   0.0213 *  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 34.06 on 33 degrees of freedom
#>   (16 observations deleted due to missingness)
#> Multiple R-squared:  0.1505,	Adjusted R-squared:  0.1248 
#> F-statistic: 5.846 on 1 and 33 DF,  p-value: 0.02129
#> 
rm(model)