Data for Exercise 9.60
Jobsat
A data frame/tibble with nine observations on two variables
Wilson Stress Profile score for teachers
job satisfaction score
Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.
plot(satisfaction ~ wspt, data = Jobsat)
model <- lm(satisfaction ~ wspt, data = Jobsat)
abline(model, col = "blue")
summary(model)
#>
#> Call:
#> lm(formula = satisfaction ~ wspt, data = Jobsat)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.3481 -0.3426 -0.0398 0.5652 0.9116
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 19.75457 2.48050 7.964 9.38e-05 ***
#> wspt -0.17569 0.02964 -5.928 0.000583 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.7939 on 7 degrees of freedom
#> Multiple R-squared: 0.8339, Adjusted R-squared: 0.8102
#> F-statistic: 35.14 on 1 and 7 DF, p-value: 0.0005826
#>
rm(model)