Data for Exercises 9.51 and 9.52
Iqgpa
A data frame/tibble with 12 observations on two variables
IQ scores
Grade point average
Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.
plot(gpa ~ iq, data = Iqgpa, col = "blue", pch = 19)
model <- lm(gpa ~ iq, data = Iqgpa)
summary(model)
#>
#> Call:
#> lm(formula = gpa ~ iq, data = Iqgpa)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.07841 -0.46768 -0.02206 0.48912 0.90423
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.530328 2.305324 1.098 0.298
#> iq 0.002504 0.018988 0.132 0.898
#>
#> Residual standard error: 0.6572 on 10 degrees of freedom
#> Multiple R-squared: 0.001736, Adjusted R-squared: -0.09809
#> F-statistic: 0.01739 on 1 and 10 DF, p-value: 0.8977
#>
rm(model)