Data for Exercise 9.50

Insulate

Format

A data frame/tibble with ten observations on two variables

temp

outside temperature (in degrees Celcius)

loss

heat loss (in BTUs)

References

Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.

Examples


plot(loss ~ temp, data = Insulate)
model <- lm(loss ~ temp, data = Insulate)
abline(model, col = "blue") 

summary(model)
#> 
#> Call:
#> lm(formula = loss ~ temp, data = Insulate)
#> 
#> Residuals:
#>    Min     1Q Median     3Q    Max 
#>  -7.40  -3.00   0.70   2.85  10.20 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  81.6000     2.1772   37.48 2.82e-10 ***
#> temp         -1.6800     0.1257  -13.37 9.39e-07 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 5.621 on 8 degrees of freedom
#> Multiple R-squared:  0.9571,	Adjusted R-squared:  0.9518 
#> F-statistic: 178.6 on 1 and 8 DF,  p-value: 9.394e-07
#> 

if (FALSE) {
library(ggplot2)
ggplot2::ggplot(data = Insulate, aes(x = temp, y = loss)) + 
           geom_point() + 
           geom_smooth(method = "lm", se = FALSE) + 
           theme_bw()
}