R/BSDA-package.R
Indy500.Rd
Data for Exercises 7.11 and 7.36
Indy500
A data frame/tibble with 33 observations on four variables
a character variable with values andretti
,
bachelart
, boesel
, brayton
, c.guerrero
,
cheever
, fabi
, fernandez
, ferran
, fittipaldi
,
fox
, goodyear
, gordon
, gugelmin
, herta
,
james
, johansson
, jones
, lazier
, luyendyk
,
matsuda
, matsushita
, pruett
, r.guerrero
,
rahal
, ribeiro
, salazar
, sharp
, sullivan
,
tracy
, vasser
, villeneuve
, and zampedri
qualifying speed (in mph)
number of Indianapolis 500 starts
a numeric vector where 1 indicates the driver has 4 or fewer Indianapolis 500 starts and a 2 for drivers with 5 or more Indianapolis 500 starts
Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.
stripchart(qualif ~ group, data = Indy500, method = "stack",
pch = 19, col = c("red", "blue"))
boxplot(qualif ~ group, data = Indy500)
t.test(qualif ~ group, data = Indy500)
#>
#> Welch Two Sample t-test
#>
#> data: qualif by group
#> t = -1.9197, df = 12.033, p-value = 0.07892
#> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
#> 95 percent confidence interval:
#> -3.0111081 0.1899245
#> sample estimates:
#> mean in group 1 mean in group 2
#> 226.4538 227.8644
#>
if (FALSE) {
library(ggplot2)
ggplot2::ggplot(data = Indy500, aes(sample = qualif)) +
geom_qq() +
facet_grid(group ~ .) +
theme_bw()
}