R/BSDA-package.R
Homes.Rd
Data for Statistical Insight Chapter 5
Homes
A data frame/tibble with 65 observations on the four variables
a character variable with values Akron OH
,
Albuquerque NM
, Anaheim CA
, Atlanta GA
, Baltimore
MD
, Baton Rouge LA
, Birmingham AL
, Boston MA
,
Bradenton FL
, Buffalo NY
, Charleston SC
, Chicago
IL
, Cincinnati OH
, Cleveland OH
, Columbia SC
,
Columbus OH
, Corpus Christi TX
, Dallas TX
,
Daytona Beach FL
, Denver CO
, Des Moines IA
,
Detroit MI
, El Paso TX
, Grand Rapids MI
,
Hartford CT
, Honolulu HI
, Houston TX
,
Indianapolis IN
, Jacksonville FL
, Kansas City MO
,
Knoxville TN
, Las Vegas NV
, Los Angeles CA
,
Louisville KY
, Madison WI
, Memphis TN
, Miami FL
,
Milwaukee WI
, Minneapolis MN
, Mobile AL
,
Nashville TN
, New Haven CT
, New Orleans LA
, New
York NY
, Oklahoma City OK
, Omaha NE
, Orlando FL
,
Philadelphia PA
, Phoenix AZ
, Pittsburgh PA
,
Portland OR
, Providence RI
, Sacramento CA
, Salt
Lake City UT
, San Antonio TX
, San Diego CA
, San
Francisco CA
, Seattle WA
, Spokane WA
, St Louis MO
,
Syracuse NY
, Tampa FL
, Toledo OH
, Tulsa OK
, and
Washington DC
a character variable with values Midwest
, Northeast
,
South
, and West
a factor with levels 1994
and 2000
median house price (in dollars)
National Association of Realtors.
Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.
tapply(Homes$price, Homes$year, mean)
#> 1994 2000
#> 107158.5 136493.8
tapply(Homes$price, Homes$region, mean)
#> Midwest Northeast South West
#> 106402.94 133309.09 93769.57 177625.00
p2000 <- subset(Homes, year == "2000")
p1994 <- subset(Homes, year == "1994")
if (FALSE) {
library(dplyr)
library(ggplot2)
dplyr::group_by(Homes, year, region) %>%
summarize(AvgPrice = mean(price))
ggplot2::ggplot(data = Homes, aes(x = region, y = price)) +
geom_boxplot() +
theme_bw() +
facet_grid(year ~ .)
}