Data for Example 2.13
Gpa
A data frame/tibble with 10 observations on two variables
high school gpa
college gpa
Kitchens, L. J. (2003) Basic Statistics and Data Analysis. Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning.
plot(collgpa ~ hsgpa, data = Gpa)
mod <- lm(collgpa ~ hsgpa, data = Gpa)
abline(mod) # add line
yhat <- predict(mod) # fitted values
e <- resid(mod) # residuals
cbind(Gpa, yhat, e) # Table 2.1
#> hsgpa collgpa yhat e
#> 1 2.7 2.2 2.686530 -0.48653001
#> 2 3.1 2.8 3.225329 -0.42532943
#> 3 2.1 2.4 1.878331 0.52166911
#> 4 3.2 3.8 3.360029 0.43997072
#> 5 2.4 1.9 2.282430 -0.38243045
#> 6 3.4 3.5 3.629429 -0.12942899
#> 7 2.6 3.1 2.551830 0.54816984
#> 8 2.0 1.4 1.743631 -0.34363104
#> 9 3.1 3.4 3.225329 0.17467057
#> 10 2.5 2.5 2.417130 0.08286969
cor(Gpa$hsgpa, Gpa$collgpa)
#> [1] 0.8439231
if (FALSE) {
library(ggplot2)
ggplot2::ggplot(data = Gpa, aes(x = hsgpa, y = collgpa)) +
geom_point() +
geom_smooth(method = "lm") +
theme_bw()
}